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ABSTRACT 

This technical report describes our approach to Task 1 ''Acoustic 

Scene Classification'' of the DCASE 2020 challenge. For subtask 

A, we introduce per-channel energy normalization (PCEN) as an 

additional preprocessing step along with log-Mel spectrograms. 

We also propose two residual network architectures utilizing 

“Shake-Shake” regularization and the “Squeeze-and-Excitation” 

block, respectively. Our best submission (ensemble of 8 classifi-

ers) outperforms the corresponding baseline system by 16.2% in 

terms of macro-average accuracy. For subtask B, we mainly 

focus on a low complexity, fully convolutional neural network 

architecture, which leads to 5% relative improvement over base-

line accuracy.   

Index Terms— DCASE 2020, Acoustic Scene Classi-

fication, PCEN, Convolutional Neural Network 

1. INTRODUCTION 

In this year’s DCASE challenge, subtask A addresses the prob-

lem of classifying recordings from various devices into one of ten 

predefined classes. In fact, the official development set consists 

mainly of data from a single recording device A, while a limited 

number of recordings from secondary devices (real devices B and 

C, simulated devices s1-s6) is also provided [1]. Audio files are 

recorded in mono at 44.1 kHz sampling rate and 24-bit resolution. 

In subtask B, audio is recorded in stereo, 48 kHz/24-bit format 

with the same device A. Furthermore, data should now be classi-

fied into one of three major classes. Since this is a straightfor-

ward task, limitation on model size is imposed, thus forcing the 

entrants to develop low complexity systems.  

The rest of the report is organized as follows. Section 2 de-

scribes the proposed methods for audio preprocessing as well as 

data augmentation. Section 3 introduces the architectures used in 

this task. Results for each subtask are reported in Section 4. At 

last, conclusion and future work are presented in Section 5.  

2. PROPOSED METHODS 

2.1. Audio preprocessing 

For both subtask A and subtask B, spectrograms are extracted by 

firstly applying a Hann window of length 2048 samples and 50% 

overlap to each signal and then computing the Short-time Fouri-

er transform (STFT). Note that all audio files related to subtask 

 

B are converted to mono prior to spectrogram extraction. Subse-

quently, we define the Mel scale using the HTK formula [2] and 

apply the Mel filter bank to the power spectrum. Minimum fre-

quency is set to 0 Hz, whereas the maximum is set to the Nyquist 

frequency (22.05 kHz for subtask A, 24 kHz for subtask B). Last, 

the resulting time-frequency representation is converted to log 

scale. This type of preprocessing yields spectrograms with 128 

frequency bins and 431 (or 469) time samples for subtask A (or 

subtask B), respectively.  

2.2. Per-Channel Energy Normalization (PCEN) 

Per-channel energy normalization was introduced in the task of 

keyword spotting as a technique that improves robustness to 

loudness variation [3]. Recently, Lostanlen et al. [4] provided 

insight into how PCEN works through asymptotic analysis. The 

entire process can be divided into three stages, namely temporal 

integration, adaptive gain control (AGC) and dynamic range 

compression (DRC). The first stage, i.e. temporal integration, 

involves the low-pass filtering of the Mel magnitude spectrum to 

estimate the level of background noise. This results in a 

smoothed version of the Mel spectrogram, which is used for 

adapting the gain level in the following stage. At the final stage, 

dynamic range compression is applied to adjust the loudness of 

the foreground regions. 

We use the open-source implementation of PCEN provided 

by librosa1. This preprocessing step is only applied to subtask A 

to compensate for the effect of each recording device on the spec-

tral content of a signal. We adopt the following set of parameters, 

i.e. time constant T = 0.06, the exponent of AGC α = 0.8, expo-

nent of DRC r = 0.25, while the soft threshold of DRC is empiri-

cally set to δ = 1000 to improve the average foreground-to-

background ratio. Fig. 1 shows the differences between log-Mel 

spectrograms and the corresponding PCEN representations for 

two overlapping audio samples recorded with two different de-

vices. 

2.3. Data augmentation 

All models are trained using the official train/validation split. 

For subtask A, instead of using any kind of external data, we 

decided to apply some data augmentation methods to reduce 

 
1 https://librosa.github.io/librosa/generated/librosa.core.pcen.html 

https://librosa.github.io/librosa/generated/librosa.core.pcen.html
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overfitting and improve the generalizability of our models. First, 

mixup augmentation [5] is used with α = 0.2. Additionally, we 

use the Audiomentations2 library to apply the following trans-

formations, i.e. frequency masking (minimum bandwidth set to 

0.1, maximum set to 0.5), time stretching (minimum rate is 0.8, 

maximum is 1.2), shifting, and clipping distortion (maximum 

percentile threshold set to 40). Note that the aforementioned 

transformations are only applied to data from secondary devices 

(i.e., all except for recording device A). 

3. ARCHITECTURES 

Our submission is based exclusively on fully convolutional neu-

ral networks. For subtask A, we propose two ResNet variants, 

while a low complexity network is introduced for subtask B.  

Note that each network starts with a batch normalization 

layer as suggested in [6]. This technique replaces any type of data 

normalization prior to network input. 

3.1. Residual Networks (subtask A) 

ResNets [7] are widely used in tasks related to computer vision 

since they can achieve higher accuracy by increasing the depth of 

the network. In this task, the first ResNet variant that we propose 

 
2 https://github.com/iver56/audiomentations 

utilizes “Shake-Shake” regularization [8] which combines two 

parallel branches stochastically. The residual block for this archi-

tecture is depicted in Fig. 2. The input of each block is trans-

formed using 1x1 convolution to match the dimensions of the 

residual block’s output. The final network architecture is detailed 

in Table 1. 

The second ResNet variant is based on the “Squeeze-and-

Excitation” (SE) block [9]. The SE block forces the network to 

adaptively adjust the weighting of each feature map, which leads 

to more informative features. The structure of the residual block 

in this case is provided on [9], while Table 2 shows the architec-

ture of this network. We did not employ max pooling layers be-

tween successive residual blocks; hence the frequency axis re-

mains unchanged throughout the network. Moreover, we set the 

reduction ratio to r = 8 for the first two residual blocks since the 

number of channels in these blocks is relatively small. For the 

last two blocks, the reduction ratio is set to its default value r = 

16. 

3.2. Low complexity network (subtask B) 

Due to model size limitation, we adopt a straightforward, VGG-

style architecture with an increasing number of filters. We choose 

ELU as the activation function for every convolutional layer. We 

also use spatial dropout since it drops entire feature maps instead 

of individual pixels. Model size reaches 496.2 KB (using 32 bits 

per parameter), therefore it meets the above constraint. This net-

work architecture is shown in Fig. 3. 

3.3. Training 

All models are trained using Keras (version 2.3.0) with Tensor-  
 

 

 

 

 

 

Figure 1: (from left to right) Log-Mel spectrograms vs. PCEN representation for overlapping recordings with real device A and simu-

lated device s1, respectively. 

Figure 2: Residual block for ShakeResNet architecture. C1, C2 

denote the number of channels, while f1, f2 are the kernel sizes. 

Figure 3: Low complexity, fully convolutional deep neural net-

work architecture. C is the number of channels, k1 and k2 are 

kernel sizes, whereas p is the dropout rate. 

https://github.com/iver56/audiomentations
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Table 1: ShakeResNet architecture 

Layer Channels Kernel size 

BN - - 

Conv2D+ReLU+BN 16 5x5 

MaxPooling2D 16 1x10 

ResidualBlock 

(C1=24, C2=32) 
32 

f1 = 5x5 

f2 = 5x5 

MaxPooling2D 32 2x5 

ResidualBlock 

(C1=48, C2=64) 
64 

f1 = 5x5 

f2 = 5x5 

MaxPooling2D 64 2x3 

ResidualBlock 

(C1=96, C2=128) 
128 

f1 = 3x3 

f2 = 3x3 

MaxPooling2D 128 1x3 

ResidualBlock 

(C1=192, C2=128) 
128 

f1 = 3x3 

f2 = 1x1 

Conv2D+BN 10 1x1 

GlobalAvgPooling 10 - 

Softmax - - 

 

 

flow (version 2.1.0) as backend. We use the Adam optimizer 

[10] with an initial learning rate of 0.0005 and the cross-entropy 

loss function. The learning rate is decreased by a factor of 0.1 

(lower bound is equal to 0.0001) if the validation loss does not 

improve for 5 consecutive epochs. We train each model for 100 

epochs with a batch size of 16 and data shuffling between 

epochs. During training, we save the best performing model 

based on validation accuracy. Moreover, all network weights are 

initialized using the He normal technique. L2 regularization is 

also added on all convolutional layers with different values of 

lambda for each network. In the following paragraphs we detail 

the training setup for each subtask separately. For evaluation, we 

trained all models on the entire development set. 

For subtask A, each model is trained on the provided train-

ing set independently using either log-Mel spectrograms or 

PCEN representations. This process results in 4 distinct models. 

Additionally, we train 4 models using the augmented dataset. 

Note that lambda is set to 0.0001 for all models related to this 

subtask. 

For subtask B, we train a single model using exclusively 

log-Mel spectrograms. Here, lambda is set to 0.001, which leads 

to a highly regularized model. 

3.4. Ensemble models 

Our submission for subtask A consists only of ensembles which 

are created by averaging each model’s softmax predictions. As a 

result, we combine several weak learners, which are complemen-

tary to each other, to form a robust model (strong learner). This 

method significantly boosts the overall prediction performance. 

Our final systems are labeled as follows. 

 

• Vilouras_AUTh_task1a_1: Ensemble of 4 models trained on 

the official development set (each residual network is trained 

on either log-Mel spectrograms or PCEN representations, re-

spectively). 

• Vilouras_AUTh_task1a_2: Ensemble of 4 models trained on 

Table 2: SEResNet architecture 

Layer Channels Kernel size 

BN - - 

Conv2D+ReLU+BN 16 5x5 

MaxPooling2D 16 1x10 

ResidualBlock 

(C1=16, C2=24) 
24 

f1 = 5x5 

f2 = 5x5 

ResidualBlock 

(C1=32, C2=48) 
48 

f1 = 5x5 

f2 = 5x5 

ResidualBlock 

(C1=64, C2=96) 
96 

f1 = 3x3 

f2 = 3x3 

ResidualBlock 

(C1=128, C2=192) 
192 

f1 = 3x3 

f2 = 3x3 

Conv2D+BN 10 1x1 

GlobalAvgPooling 10 - 

Softmax - - 

 

 

the augmented dataset (using either log-Mel spectrograms or 

PCEN representations). 

• Vilouras_AUTh_task1a_3: Ensemble of 8 models, fusion of 

the previous two ensembles. 

4. RESULTS 

In this section we present the results on the official validation set 

for each subtask. Macro-average accuracy and log loss are used 

as evaluation metrics for this task. Table 3 illustrates the class-

wise and the average accuracy, whereas Table 4 shows the per-

class log loss as well as the average over each class, respectively. 

Each column represents the corresponding ensemble as labeled in 

the previous section (e.g. Sub. 1 refers to the ensemble with sub-

mission ID equal to 1). Finally, Table 5 displays the overall re-

sults associated to subtask B. 

5. CONCLUSION 

In this technical report, we elaborate our approach for Task 1 of 

the DCASE 2020 challenge. We propose various deep convolu-

tional neural network architectures which, combined with data 

augmentation and regularization, reach state-of-the-art results. In 

subtask A, we introduce per-channel energy normalization as a 

novel preprocessing step to address data mismatch, i.e. audio 

samples recorded with multiple devices. Furthermore, we employ 

deep residual networks for classification. Each model is trained 

on either PCEN representations or log-scaled Mel spectrograms. 

Since the resulting classifiers complement each other, we decided 

to submit 3 ensembles. Our best performing ensemble outper-

forms the corresponding baseline system by 16.2% in terms of 

macro-average accuracy. In subtask B, we implement a low com-

plexity system trained exclusively on log-Mel spectrograms. This 

model surpasses the baseline by 5%. 

Future work will focus on further optimizing PCEN hy-

perparameters. Although values of α close to 1 can adequately 

eliminate spectral equalization [4], training on these representa-

tions proves to be extremely unstable and inefficient. Finally, we  
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Table 3: Subtask A, class-wise and average accuracy 

Class Sub. 1 Sub. 2 Sub. 3 

Airport 64.7 % 56.2 % 61.3 % 

Bus 85.2 % 87.2 % 88.9 % 

Metro 52.2 % 65.0 % 60.9 % 

Metro station 60.9 % 64.7 % 65.7 % 

Park 91.9 % 90.2 % 92.6 % 

Public square 54.6 % 50.2 % 52.9 % 

Shopping mall 71.7 % 74.4 % 75.4 % 

Street pedestrian 43.8 % 52.2 % 49.5 % 

Street traffic 81.1 % 85.2 % 84.2 % 

Tram 75.1 % 66.3 % 71.7 % 

Average 68.1 % 69.2 % 70.3 % 

 

 

Table 4: Subtask A, per-class and average log loss 

Class Sub. 1 Sub. 2 Sub. 3 

Airport 0.977 1.146 1.031 

Bus 0.500 0.499 0.477 

Metro 1.122 0.912 0.983 

Metro station 1.115 0.998 1.022 

Park 0.394 0.436 0.405 

Public square 1.380 1.471 1.389 

Shopping mall 0.756 0.759 0.739 

Street pedestrian 1.347 1.228 1.259 

Street traffic 0.651 0.514 0.567 

Tram 0.839 0.937 0.851 

Average 0.908 0.890 0.872 

 

 

Table 5: Results of subtask B 

Class Accuracy Log loss 

Indoor 89.6 % 0.281 

Outdoor 89.3 % 0.256 

Transportation 97.9 % 0.083 

Average 92.3 % 0.211 

 

 

plan to investigate class-conditional data augmentation to im-

prove the performance of our proposed models. 
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