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ABSTRACT

This technical report describes our submission for Task 1A of
DCASE2020 challenge. The objective of the task is to identify
acoustic scenes from audios recorded by various recording devices.
In our ASC systems, we use sound-duration based decomposition
method to decompose the time-frequency (TF) features into 3 com-
ponents. Our observation shows that low frequency bins of the long-
duration component image are most easily affected by the change
of recording devices. We use an AlexNet-like CNN model with
the decomposed TF features to build ASC systems. To prevent the
CNN classifier from over-fitting to the seen recording devices in the
training dataset, we apply an auxiliary classifier on the embedding
feature extracted from long-duration component image. We pro-
pose the regularized cross-entropy (RCE) loss to train the auxiliary
classifier. Experiment results on development dataset shows that
the use of regularized cross-entropy loss significantly improves the
CNN accuracy on audios from unseen devices.

Index Terms— Acoustic scene classification, convolutional
neural network, feature decomposition, regularized cross-entropy
loss

1. INTRODUCTION

Acoustic scene classification (ASC) is the task of classifying
recorded audio signal into one of predefined scene classes. It has
been one of the major task in IEEE AASP Challenge on Detection
and Classification of Acoustic Scenes and Events (DCASE) since
2013. This report describes the details of our submission for task
1A of DCASE 2020. The objective of the task is to build ASC sys-
tems with generalization ability across various recording devices.

In this report, we use the wavelet-based filter-bank (scalogram)
features to construct our ASC systems. The scalogram features are
further decomposed into 3 component images using the method de-
scribed in [1]. Observation on spectrum mapping coefficients from
different devices to device A shows that the low frequency bins
are most affected by the difference of recording devices. Besides,
when scalogram features are decomposed, we observe that most of
the device-relevant acoustic information lies in Slong component
which contains the long-lasting background sounds. Thus, we pro-
pose several ASC systems which are more robust to the change of
recording devices compared to an AlexNet-like CNN baseline.

To further prevent the CNN classifier from over-fitting to the
seen recording devices in the training data, we apply an auxiliary
classifier on the embedding feature extracted from long-duration

component image. Instead of training with plain cross-entropy loss,
we propose a novel loss function called regularized cross-entropy
(RCE) loss for training auxiliary classifier. We formulate the RCE
loss as the weighted combination of the CE loss and a regulariza-
tion loss, which serves as a strong regularizer to make the CNN
classifier be less focus on the long-lasting background patterns for
ASC, and thus prevent the classifier from being bias to the audios
from seen recording devices. Experimental results on development
dataset show that our systems significantly improve the ASC accu-
racy towards audio signals from unseen devices.

2. FEATURE DESIGN

2.1. Wavelet-Based Filter-Bank Features

We use wavelet-based filter-bank features in our proposed ASC
models. Previous works have shown that applying wavelet filter-
bank on STFT results in a better feature representation than apply-
ing mel filter-bank for ASC task [1, 2]. We follow the same setting
as [1] to extract the scalogram features. Figure 1 shows the 128
wavelet filters used to extract the scalogram features. Compared
with log-mel features with the same number of frequency bins, the
scalogram features have relatively higher frequency resolution in
low frequencies.

Figure 1: The wavelet filters used to extract the saclogram features.
The x-axis represents the frequency points in short-time Fourier
transform (STFT).

2.2. Time-Frequency Feature Decomposition

The method of time-frequency feature decomposition is based on
median filtering. It was studied initially with log-mel features in
[3] and further investigated in [1]. Experimental results show that
CNNs trained with decomposed time-frequency features perform
better than CNNs trained with un-decomposed features. The de-
composition method allows the separation of long-lasting back-
ground sound information and transient sound information, which
enables more fine-grained analysis of acoustic scene signals.
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In this report, scalogram feature S is decomposed into 3 compo-
nent images: Slong , Smedium and Sshort. Slong contains the long-
duration sounds, Smedian contains the medium-duration sounds
and Sshort contains short-duration sounds. Notice that the follow-
ing relationship holds:

S = Slong + Smedium + Sshort. (1)

3. ANALYSIS ON RECORDING DEVICES

Acoustic scene signals recorded with different devices may have
different frequency response. The frequency response refers to the
output level of recording device over its receivable frequency range.

3.1. Frequency Response Modeling

We assume the frequency response of a recording device to be linear
time-invariant (LTI). Denote two recording devices “A” and “B”, we
model the relationship between an audio signal xA[n] (recorded by
device “A”) and a parallel audio signal xB [n] (recorded by device
“B”) in Fourier domain as:

|XA[f ]| = exp(CB,A) · |XB [f ]|, (2)

where exp(·) is the exponential function and CB,A is a vector with
real constant values used to map the frequency intensities of XB to
device XA. Notice that it is common to represent frequency inten-
sity in logarithm scale:

log(|XA[f ]|) = CB,A + log(|XB [f ]|), (3)

and we name the values of CB,A as the spectrum mapping coeffi-
cients.

3.2. Frequency Response of Multiple Devices

The TAU Urban Acoustic Scenes 2020 Mobile development dataset
[4] contains audios from 9 devices. In the training set there are au-
dios from 6 devices: A, B, C, S1, S2, S3. After extraction of scalo-
gram features as described in Section 2.1, we calculate the spectrum
mapping coefficients from different devices to device A using par-
allel audios. Then we take the mean of the coefficients across all
time frames and all audio signals. The results are shown as in Fig-
ure 2. It can be observed from the figure that the spectrum mapping
coefficients are most diverge in low frequency bins.

Spectrum mapping coefficients for the decomposed scalogram
features are also considered. After decomposing the scalogram fea-
tures S into 3 component images (Slong , Smedium and Sshort) us-
ing two median filters with kernel size 201 and 11, we plot the spec-
trum mapping coefficients from various devices to device A for each
component image as in Figure 3. As we can see, the spectrum map-
ping coefficients for Smedium and Sshort are very close to 0. The
difference caused by recording devices mainly lies in Slong . Thus,
specifically making Slong to be device-invariant is the key to con-
struct robust feature representation for ASC with various devices.

4. PROPOSED ASC SYSTEMS

4.1. Baseline System Design

The baseline system uses a CNN classifier whose architecture is
given as in Table 1 (with the number of input channel n being 1). To

Figure 2: Mean spectrum mapping coefficients from different de-
vices to device A. The coefficients are calculated using scalogram
features as described in Section 2.1.

Table 1: The CNN architecture used to construct our ASC system.
n is the number of input channels.

1 Input n× 128× 128

2 3x3 Convolution-BN-ReLU (48 filters)
3 2x2 Max Pooling
4 3x3 Convolution-BN-ReLU (96 filters)
5 2x2 Max Pooling
6 3x3 Convolution-BN-ReLU (192 filters)
7 2x2 Max Pooling
8 3x3 Convolution-BN-ReLU (192 filters)
9 3x3 Convolution-BN-ReLU (192 filters)

10 2x2 Max Pooling

11 Flattening
12 Fully Connected (dim-1024)-BN-ReLU
13 Fully Connected (dim-256)-BN-ReLU
14 10-way Sigmoid

make prediction on a 10-second audio from the dataset, the scalo-
gram feature are extracted from the audio. Then it is cut into 1.28-
second non-overlapping feature segments. Each segment is fed into
the CNN classifier to obtain the segment-level soft predictions. The
soft prediction on the 10-second audio is obtained by averaging the
soft predictions of its segments.

4.2. Robust ASC Systems for Various Devices

We propose multiple single-model ASC systems to deal with the
classifier bias towards seen recording devices. They are listed as
follows:

• System A is similar to the baseline model. The only difference
is that, instead of using the plain scalogram features, we apply
the 1-D filter [−1, 0,+1] on the time axis for each frequency
bin of the scalogram features. In this way we remove the long-
lasting background sounds and only the transient sounds are
preserved.
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Figure 3: Mean spectrum mapping coefficients from various devices
to device A calculated using decomposed scalogram feature com-
ponent Slong , Smedium and Sshort. There are 5 × 3 = 15 curves
in this figure (some curves are overlapping). The coefficient curves
computed from the same component image are shown in same color.

• System B uses the decomposed scalogram features. The scalo-
gram features are decomposed using two median filters with
kernel size 201 and 11. As each time frame represent 0.01 sec-
ond, after decomposition Slong contains sounds longer than
1 second, Smedian contains sounds with duration being in
the range from 1 second to 0.05 second, and Sshort contains
sounds shorter than 0.05 second. Given n = 3, we still use the
CNN architecture in Table 1, but the convolutional layers are
divided into 3 groups. This is to guide the CNN model to learn
long-lasting background sounds, medium duration sounds and
transient sounds separately.

• System C is a modification of System B. We discard the Slong

in System B and thus the number of input channels n = 2. The
convolutional layers of CNN model are divided into 2 groups.
The reason of discarding Slong is because it is very sensitive to
the change of recording devices, as illustrated in Section 3.2.

• System D is a also a modification of System B. Instead of dis-
card the whole Slong , we only discard some of the frequency
bins which are easily affected by the change of recording de-
vices (by setting them to zeros after input normalization). We
empirically select the first 15 bins and the last 36 bins to dis-
card.

• System E further considers the manipulation of Slong . In this
system we use all component images. To prevent the model
from over-fitting to the seen devices because of Slong , an aux-
iliary scene classifier with input being the time-axis-averaged
embedding feature of Slong is trained with regularized cross-
entropy (RCE) loss. Figure 4 illustrate the system design for
System E. The RCE loss is a weighted sum of the CE loss and
a regularization loss, which will be described in Section 5.

CE Loss

Regularized 
CE Loss

Figure 4: System E with an auxiliary classifier with input being
embeddings of Slong trained with regularized cross-entropy (RCE)
loss.

5. REGULARIZED CROSS-ENTROPY LOSS

5.1. Cross-Entropy Loss

The cross-entropy loss is widely used in training deep classification
models. Under a binary classification scenario, denote y = 0 or 1
as the ground-truth label, p ∈ (0, 1) as the output probability of the
DNN classifier, cross entropy (CE) loss can be defined as:

LCE =

{
−log(p) if y=1
−log(1− p) if y=0. (4)

For multi-class classification problem, the following binary
cross-entropy loss is calculated for each class:

LBCE(p) = −y · log(p)− (1− y) · log(1− p). (5)

We use the sigmoid function σ(·) as the output activation func-
tion of our CNN models. In this case, the output probability of CNN
is obtained by applying sigmoid function to logit x:

p = σ(x) (6)

5.2. Regularized Cross-Entropy Loss

The formulation of regularized cross-entropy (RCE) loss is inspired
by focal loss [5], starting from the concept of easy/hard samples.
An easy sample means a training sample with high predicted prob-
ability on ground-truth class, while a hard sample means a training
sample with low predicted probability on ground-truth class. Con-
sidering the gradient of plain CE loss, the gradient magnitude is
large for hard samples (predicted probability < 0.5) and is small
for easy samples (predicted probability > 0.5). Focal loss is basi-
cally making the gradient magnitude for hard samples to be larger
(by making the loss curve to be steeper), and thus it can work well if
we encounter severe class imbalance during model training. On the
other hand, if we have many outliers in the training data, we may
hope to do the opposite of focal loss – to reduce the learning weights
of hard samples. Specifically in ASC task, we want the CNN clas-
sifier not to learn too much details from Slong as it is sensitive to
the change of recording devices. Thus, the RCE loss is proposed for
CNN training.

The RCE loss is a combination of two loss terms: the CE loss
LCE and a regularization loss LR. The regularization loss is de-
signed as a symmetric version of CE loss, which has large gradient
magnitude for easy samples and small gradient magnitude for hard
samples (outliers). The RCE loss LRCE is given by:

LRCE = (1− α)LCE + αLR (7)
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with

LR =

{
log(1− p) if y=1
log(p) if y=0. (8)

Notice that α ∈ [0, 1] is a weighting parameter to control the degree
of regularization. If α = 0, the RCE loss becomes the plain CE
loss. If α = 0.5, then the loss is a linear function of logit x. The
loss curve of LRCE for different values of α is shown as in Figure
5. Notice that the loss value can be negative, however for model
learning it is the gradient of the loss that truly matters.

Figure 5: The regularized cross-entropy loss with different α.

Figure 6: The gradient curve of RCE loss w.r.t. logit (sigmoid is
used). When α = 0 the RCE loss becomes the plain CE loss.

6. EXPERIMENTS

6.1. Data Preprocessing

The TAU Urban Acoustic Scenes 2020 Mobile development dataset
[4] is used for model training and testing. For each 10-second bin-
aural audio signal in the dataset, STFT is applied on audio wave-
form with 2048 FFT points, window length of 25 ms and hop length

of 10 ms. Wavelet filter-bank is applied on the logarithm magni-
tude of the STFT result to obtain the scalogram features. The re-
sulted scalogram feature has the shape (1000, 128) where 1000 is
the number of time frames and 128 is the number of frequency bins.

6.2. Optimization

We use initial learning rate of 0.0001, and the learning rate is mul-
tiplied with 0.5 after every 4 epoch. The number of training epochs
is 40. Adam optimizer [6] (β1 = 0.9 and β2 = 0.999) is used.
Weight decay with coefficient 0.0015 is used for regularization pur-
pose. Mixup [7] approach is used for data augmentation.

6.3. Results and Discussion

Table 2 shows the performance single-model ASC systems de-
scribed in Section 4. From the table it can be seen that: (1) Com-
pared to the baseline system, System A has an improved accuracy
for unseen devices, while the accuracy for seen devices drops a little
bit. (2) Using decomposed scalogram features (System B) performs
better than the baseline system for both seen and unseen devices.
(3) Discarding the Slong component (System C) raises the accuracy
for unseen devices but decreases the accuracy for seen device. (4)
Discarding some device-sensitive frequency bins in Slong (System
D) can maintain most of the accuracy for seen devices. However,
the improvement of accuracy on unseen devices is limited compared
to System C. (5) Using RCE loss (α = 1) trained on auxiliary clas-
sifier with input being embeddings of Slong (System E) achieves
the best accuracy for unseen devices, while preserving most of the
accuracy for seen devices. Notice that α = 1 may not be an optimal
choice, and the accuracy can be further improved by tuning α.

Table 2: Accuracy of single-model ASC systems on the
development dataset. Description of systems is in Section
4.

Seen Device Unseen Device Overall

Baseline 65.7% 46.0% 59.1%
System A 62.8% 59.2% 61.6%
System B 67.9% 49.9% 61.9%
System C 64.1% 60.2% 62.8%
System D 67.6% 51.6% 62.3%
System E 66.0% 61.0% 64.3%

7. SYSTEM SUBMISSION

We have 4 system submissions for the Task 1A of DCASE 2020
challenge. The systems are trained using the entire development
dataset. The first submission (Wu CUHK task1a 1) is a single-
model ASC system which uses System E with α = 0.75. The
second submission (Wu CUHK task1a 2) is an ensemble of Sys-
tem A, B, C and D. The third submission (Wu CUHK task1a 3)
is an ensemble of five independently trained System E with α be-
ing 0, 0.25, 0.5, 0.75 and 1.0 respectively. The fourth submis-
sion (Wu CUHK task1a 4) is an ensemble of the third submission’s
models and System A, B, C, D.
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