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ABSTRACT

In this report, we present the system of sound event detection and
separation in domestic environments for DCASE 2020. The goal of
the task aims to determine which sound events appear in a clip and
detailed temporal ranges they occupy. The system is trained by us-
ing real data, which are either weakly-labeled or unlabeled, and syn-
thesized data with a strongly annotated label. Our proposed model
structure starts with a feature-level front-end based on convolu-
tion neural networks (CNN) followed by both embedding-level and
instance-level back-end attention modules. To take full advantage
of a large amount of unlabeled data, we jointly adopt guided learn-
ing mechanism and Mean Teacher, which averages model weights
instead of label predictions, to carry out weakly-supervised and
semi-supervised learning. A group of adaptive median windows
for each sound event is also utilized in post-processing for smooth-
ing frame-level predictions. In the public evaluation set of DCASE
2019, our best system achieves 48.50% event-based F-score, much
better than the official baseline performance (38.14%) with a rel-
ative improvement of 27.16%. Moreover, in the development set
of DCASE 2020, our system is also superior to the baseline while
using the student model as the back-end classifier. The F-score is
relatively improved by 32.91%.

Index Terms— Guided learning, Mean teacher, Semi-
supervised learning

1. INTRODUCTION

DCASE 2020 Task 4 is the follow-up of DCASE 2019 Task 4,
which aims at developing sound event detection (SED) system that
not only predicts the presence of event classes, but also the onset and
offset positions of each event. The challenge provides three kinds
of data, namely, weakly-labeled data (without timestamps), unla-
beled data, and an additional strongly annotated synthetic data (with
timestamps). Each 10-second audio clip in the dataset contains one
or more (or none) of 10 events, i.e., alarm bell ringing, blender, cat,
dishes, dog, electric shaver, frying, running water, speech, and vac-
uum cleaner. The training set contains much more unlabeled data
and fewer labeled data, where the distributions of labels are unbal-
anced with respect to training clips. Due to the above challenging
situation, the primary focus of the task is to efficiently exploit un-
labeled training data and to mitigate the influence caused by label
preference while training for better test performance.

To deal with the aforementioned problems, previous methods
tend to adopt weakly-supervised and semi-supervised learning tech-
nique with teacher-student model structure. In DCASE 2019 Task

4, Guided Learning [1] introduced us a brand new weakly-labeled
semi-supervised learning algorithm which utilized a more profes-
sional teacher model aiming at audio tagging to guide the student
model aiming at boundary detection to learn from unlabeled data.
The system, however, did not involve learning from timestamps in-
formation.

Meanwhile, Mean Teacher [2], a state-of-the semi-supervised
learning approach was commonly adopted for this task, i.e., model
from second place of DCASE 2019 [3], and the baseline system
of DCASE 2020 Task 4. With the help of consistency loss, Mean
Teacher can learn from both weakly and strongly annotated data.
The input of Mean Teacher, however, as we observe, often require
a robust representation.

In this paper, we describe a unified approach to sound event
detection that combines the best of the previous approaches: a well-
trained feature extractor trained by Guided Learning that generates
informative high-level representation, followed by a recurrent neu-
ral network (RNN) structure and classifier trained by Mean Teacher
to fully exploit strongly annotated information. Trained directly
on normalized log Mel-spectrogram and corresponding weakly and
strongly annotated labels, our model achieves competitive results
on both audio tagging and boundary detection.

2. PROPOSED METHOD

Our system is inspired by the officially provided baseline, which
is based on Mean Teacher [2, 3] and Guided Learning convolution
system [1, 4, 5] proposed by the winner of DCASE 2019 Task 4.

2.1. Model structure

As shown in Figure 1, the model consists of three parts: a feature
extractor, an embedding-level attention pooling module (eATP), and
an instance-level attention pooling module (iATP). Each of the pool-
ing modules generates both clip-level and frame-level probabilities.
We utilize different training algorithms for embedding-level and
instance-level pooling module. The structures of both models of
each step are shown in Figures 2 (a) and 3 (b). For step 1, we follow
the Guided Learning framework in [4] and use a more professional
teacher model to carry out weakly-supervised learning. As for step
2, we apply Mean Teacher [2] method for semi-supervised learning.

2.1.1. Feature extractor

The feature extractor adopts the same structure in [1] as shown in
Figure 2 (c), which consists of 1 batch normalization layer, followed
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Figure 1: Flowchart of our system. The feature extractor is pre-
trained by the guided learning algorithm in Step 1. In Step 2, Mean
Teacher learning is adopted with the pre-trained feature extractor
in Step 1.

by 3 CNN blocks (Figure 2 (d)). Each CNN block includes a single
2-dimensional CNN layer, a batch normalization layer and a ReLU
activation layer. A Max-pooling layer comes after each CNN block.
The input log Mel-spectrogram is further converted into a high-level
representation, which will then be pass on to the pooling module.
In our approach, we pre-train our feature extractor using the Guided
Learning system.

2.1.2. Pooling module

In [5], the influence of the pooling module for SED tasks is high-
lighted. Though the embedding-level pooling approach is claimed
to be superior to instance-level pooling in general, the strongly an-
notated label is not included in the training process. That is, it relies
heavily on the feature extractor to learn frame-level prediction by
itself, which results in a better feature extractor.

On the other hand, instance-level pooling can utilize times-
tamps information, but it often requires a more sophisticated high-
level representation. We argue that by training both pooling mod-
ules in turn, i.e., using embedding-level pooling to obtain robust
high-level representation for instance-level pooling, and adding
strong label information through instance-level pooling to further
fine-tune the feature extractor, the overall performance on both sides
can be improved. As shown in Figure 2 (a) and Figure 3 (b), we
adopt the same eATP structure in [5], and an identical RNN struc-
ture provided in baseline system for iATP in our model.

2.2. Learning process

In this section, we demonstrate the procedure to train our model.
First we introduce two learning techniques, i.e., Guided Learning
and Mean Teacher. Our system is based on the two methods. Then
in the following section, we show how to apply these techniques to
our proposed learning process.
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Figure 2: Key components of the model structure used in our pro-
posed method, where FC denotes the full-connected layer.

2.2.1. Guided Learning

As proposed in [1], Guided Learning consists of a teacher model
(PT-model) and a student model (PS-model), which are shown in
Figure 2 (b) and (c). Since the feature extractor of the PT-model
has a deeper CNN structure and larger receptive field than the PS-
model, we can foresee better audio tagging performance in the PT-
model. Nevertheless, the larger receptive field comes with bigger
time compression in the PT-model, and therefore reduces model
ability to see finer information hidden in time dimension. For this
reason, the PS-model is designed with no time compression in order
to achieve better performance on frame-level prediction. With the
difference in their abilities on clip-level and frame-level predictions,
we can exploit unlabeled data by making the PS-model learn from
pseudo labels generated by the PT-model.

2.2.2. Mean Teacher

As proposed in [2], the main purpose of Mean Teacher technique is
to average model weights from every training step, i.e., exponential
moving average, and to produce a more accurate model instead of
using the latest model weight directly. We then call the averaging



Detection and Classification of Acoustic Scenes and Events 2020

clip-level prob.

frame-level prob. clip-level prob.

frame-level prob.
classifier

attn. pooling

. FC + sigmoid
high-level
representation Bi-LSTM

pre-trained

feature extractor

pre-trained
feature extractor
)

(a) instance-level (b) model structure in
approach step 2

Figure 3: Step 2 framework, where pre-trained feature extractor
adopts the same structure in Figure 2 (c).

model as Mean Teacher model (MT-model) and the latest model as
Mean Student model (MS-model). In each training step, we calcu-
late two kinds of losses: the classification loss and consistency loss.
For the classification loss, we compute binary cross entropy (BCE)
loss from those predictions of MS-model that have labels to be cor-
rected. As for the consistency loss, it can be obtained by comparing
the clip-level and frame-level predictions of both the MS-model and
the MT-model for all labeled and unlabeled data. Both losses then
are summed up to update the MS-model, so we can compute new
average weights to update the MT-model.

2.2.3. The GL-MT learning algorithm

The aforementioned feature extractor is first pre-trained using
Guided Learning (Step 1 in Figure 1). After normalizing our in-
put log Mel-spectrogram separately on real and synthetic training
data, we follow the process in 2.2.1 to train our feature extractor.
Note that we do not adopt the disentangle feature method proposed
in [5]. That is, all categories share the same feature space of the
extracted high-level representation.

After the feature extractor has been well-trained enough to ex-
tract robust representation, Mean Teacher with iATP is used simul-
taneously to help the model learn strongly annotated information
and to fine-tune the feature extractor (Step 2 in Figure 1). We choose
the outputs generated from instance-level attention pooling as our fi-
nal prediction, i.e., the frame-level probability in 3. The frame-level
0/1 prediction at time ¢ is determined by

F(x7 t) = p(xt) : C(X), (D

where p(z:) denotes the frame-level probability in Figure 3 and
C'(x) represents the 0/1 clip-level prediction. If F'(x,t) is greater
than the threshold, then the output will be 1. In our system, we take
the mean of two clip-level probabilities from both eATP and iATP
to generate our clip-level 0/1 prediction, and set the threshold to 0.5.
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Table 1: Median window sizes with respect to sound events

Event Window size (frame)
Alarm bell ringing 18
Blender 52
Cat 29
Dishes 11
Dog 15
Electric shaver 161
Frying 196
Running water 80
Speech 18
Vacuum cleaner 177

2.3. Adaptive median window

The median filter is utilized to post-process the frame level output.
Once the frame-level output is generated from our system, it will
be smoothed by a group of median windows before being converted
into 0/1 prediction with a threshold of 0.5. We will then smooth the
prediction one more time with the same group of windows. In [5],
the importance of median window is underlined. Instead of using a
fixed-sized window for every class as the baseline utilized, we de-
sign a group of median windows for each individual event so that
each class has its own unique window. The idea is to acquire more
accurate boundaries by providing suitable length of filter consider-
ing the varying duration of each category in the dataset. To decide
the sizes of median windows, we analyze the average duration of
each category in the validation set and synthetic set. We follow [1]
and calculate window sizes Syi» With the following equation:

Swin - Davg X /37 (2)

where we take 8 = 1/3, and Dq.4 denotes the average duration
of each class in the dataset. Note that we do make some small ad-
justments according to the validation results. Table 1 shows the
corresponding window size for each event.

3. EXPERIMENT RESULTS

In DCASE 2020 Task 4, the event-based F?-score (macro-average)
is used to evaluate the performance. We take the 1,168 clips from
the validation set provided by DCASE 2020 as our development
set and the 692 clips from the public evaluation set provided in
DCASE 2019 as our evaluation set. We report both event-based
and segment-based (1s) results.

The original Guided Learning system is named GL-ps, us-
ing PS-model as detector, and our approach of combining Guided
Learning and Mean Teacher is named GL-MT-ms, using MS-model
as our final detector. In addition, we find that by choosing the expo-
nential moving average (EMA) model from mean teacher to be our
final detector, i.e., GL-MT-ema, can yield a 1.03% improvement in
the event-based evaluation result.

By training both systems in Figure 1, the overall performance
of both eATP and iATP can be improved. As shown in Table 2, the
performance of GL-MT-ps improves by 2.88% on the evaluation
set compare to GL-ps which only trained on embedding-level. Fur-
thermore, GL-MT-ms also performs better than baseline system by
9.33%. Since we use the same RNN model as the provided baseline
system for instance-level pooling, but with a much robust feature
extractor, it supports our argument that a better high-level represen-
tation can help improve the instance-level pooling system.
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Table 2: Macro F-scores with respect to various models.

Event-based Segment-based
Model Dev Eval Dev Eval
Baseline 34.37 38.14 69.07 71.68
GL-ps 45.05 42.53 70.81 72.34
GL-MT-ps 45.42 45.41 69.04 70.93
GL-MT-ms 45.68 47.47 71.96 74.63
GL-MT-ema 45.65 48.50 71.87 75.83

As shown in Table 2, our approach GL-MT-ema achieves the
best performance on event-based F;-score with a relative improve-
ment of 30.20% from the baseline on the evaluation set. We submit
the results of GL-MT-ps, GL-MT-ms, and GL-MT-ema to the chal-
lenge.

4. CONCLUSIONS

In this technical report, we present a system for DCASE 2020
Task 4. We utilize a CNN model with both embedding-level
and instance-level attention pooling module to carry out weakly-
supervised learning. We also adopt Guided Learning and Mean
Teacher method to carry out semi-supervised learning. In addition,
the adaptive median window post-processing is able to get more
accurate detection boundaries. We evaluate different frame-level
predictions generated by both embedding-level and instance-level
pooling modules. As aresult, we achieve 48.50% on the public eval-
uation set, improving the performance by 10.36% from the baseline.
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