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ABSTRACT

Anomaly detection has a wide range of application scenarios in
industry such as finding fraud cases in financial industry or find-
ing network intrusion in network security. Finding anomaly condi-
tion of machines in factories can prevent causing damage. Previous
works mainly focus on finding local and deep features from spec-
trograms of anomaly sounds. Most importantly, deep features are
always obtained after deep convolutional and pooling layers. How-
ever, the details of spectrogram, which present potential anomaly
information, may be lost by these operations. In this paper, we in-
troduce DPTrans, a novel dual-path Transformer-based neural net-
work for DCASE 2021 challenge Task2 (Unsupervised Anomalous
Sound Detection for Machine Condition Monitoring under Domain
Shifted Conditions). DPTrans learns temporal and frequency de-
pendencies through self-attention blocks, and achieves great perfor-
mance. Moreover, DPTrans takes advantages of Transformer, which
provide faster training speed and less GPU demand than compara-
tive methods. Finally, we take different settings of Transformer train
several models and make a fusion of them.

Index Terms— Anomaly detection, Transformer, model fusion

1. INTRODUCTION

Anomaly detection has been widely used for video surveillance,
monitoring of critical situations. However, a pump suffering from a
small leakage might not been inspected visually, it can be detected
acoustically through distinct sound patterns. Further, acoustic mon-
itoring system is cheaper and more easily developed. Therefore,
anomaly detection in industrial applications has attracted much at-
tention in recent years. The early detection of malfunctioning ma-
chinery with a reliable acoustic anomaly detection system can pre-
vent greater damages and reduce the cost of surveillance.

The purpose of anomaly detection algorithm is to find a bound-
ary between normal data and anomalous data. The challenge of
anomaly detection is the lack of anomaly data and the uncertain
types of anomaly data. In general, anomaly detection contains su-
pervised and unsupervised learning algorithms. In supervised learn-
ing algorithm, normal and abnormal sounds should be available and
annotated. But in fact, the abnormal samples are rare and usu-
ally difficultly collected. In unsupervised learning algorithm, only
normal samples are available, and unsupervised learning algorithm
have to distinguish abnormal samples.

Autoencoders (AEs) are one of the normal unsupervised learn-
ing algorithms which were applied for machine condition monitor-
ing of DCASE2020 task2 in last year [1]. AEs are usually trained
in an unsupervised way, by minimizing the distance between de-
coded data and initial data (reconstruction error), AEs can learn the
characteristic of the input. But AEs task one-dimension data as in-
put, which may loss the time-frequency features and can only model
on one-dimension. Convolutional neural networks (CNNs) are able
to extract local invariant acoustic features and show great perfor-
mance in sound detection. But anomaly information has long-time
dependencies, due to which the recurrent neural networks (RNNs)
are suitable for catching temporal dependencies. However, one
weakness of RNNs is that training the network is time-consuming.
Recently, attention mechanism has achieved state-of-the-art perfor-
mance in computer vision and natural language processing tasks,
and Transformer based architectures have been widely used and per-
forms much better than CNNs or RNNs [2,3]. Transformer are able
to catch long-time dependencies due to its multi-head self-attention,
which can process parallel and provide less training time.

In this report, we develop a novel dual-path Transformer-based
neural network for machine condition monitoring. We trained DP-
Trans using machine section IDs to distinguish the section of ob-
served signal. The proposed DPTrans tasks STFT and log-Mel
spectorgrams as sound representations. The network outputs the
softmax anomaly score for each section, which is calculated as the
averaged negative logit of the predicted probabilities for the correct
section.

This paper is organized as follows: Section 2 introduce the pro-
posed DPTrans. Section 3 describes the details of experiments. Sec-
tion 4 gives the results and discussion.

2. PROPOSED METHOD

The overview architecture of DPTrans is shown in Figure 1. The
procedure of the proposed DPTrans is described in the following.

Given a recording G of length # . We transforms G into a time-
frequency matrix X ∈ R) ×� of ) frames and � frequency bins. Let
us assume the input of DPTrans is ZC = (XC , ...,XC+%−1) ∈ R%×� ,
which is obtained from X by concatenating consecutive % frames.

DPTrans consists of several DPTrans encoders, each of them
consists of two Transformer encoders. Inside each DPTrans en-
coder, the input ZC is modeled sequentially on frames by the first
Transformer encoder, the the output of the first Transformer en-
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Figure 1: The overview architecture of DPTrans.

coder is transposed and modeled sequentially on frequency bins by
the second Transformer encoder, which can expressed as:

ZC = � 5 (�C (ZC )) = �= (ZC ) , (1)

where �C (·) and � 5 (·) are the first and second Transformer en-
coder, and ZC is the output of the =th DPTrans encoder �= (·). ZC
is fed into the next DPTrans encoders, a linear layer is applied and
the output of frame-axis is reduced on the output of the DPTrans
encoders to get the final output:

Ĩ = 5 (�= (... �1 (ZC ))) , (2)

where Ĩ ∈ R( is the probability vector predicted by DPTrans 5 (·),
( is number of machine sections. We use CrossEntropy to calculate
the classification loss, the loss function !2 can be formulated as
follows:

!2 = �A>BB�=CA>?~ ( Ĩ, ;) , (3)

where ; is the real one hot label of machine section IDs.
By shifting the % by ! frames, � = (b) −%

!
c) images are ex-

tracted. The anomaly score is calculated as:

�(X) = 1
�

�∑
1=1

log { 1 − ?(ZC )
?(ZC )

}, (4)

where ? is the softmax output of DPTrans for the correct section.

3. EXPERIMENTS

3.1. Dataset

The dataset of task2 consists of seven types of machines, including
toyCar, toyTrain, fan, gearbox, pump, slider and valve. Not only the
machine type is changed compared to the task of DCASE2020, but
also more data are provided to solve the problem of domain shift for
machine condition monitoring [4–6].

The development dataset consists of three sections for each ma-
chine, and the sounds in each section contains around 1,000 normal
recordings in source domain and three normal recordings in a tar-
get domain for training, and around 100 clips each of normal and

anomalous recordings in the source and target domain for testing.
Each recording is a 10-second audio that records the running sounds
of a machine and its environmental noise.

The additional training dataset provides the other three sections
for each machine type. Each section consists of around 1,000 nor-
mal recordings in source domain and three normal recordings in a
target domain for training. Around 100 clips each of normal and
anomalous recordings in the source and target domain from the
three sections will be used as evaluation dataset. The overview of
the task2 dataset is shown in Figure 2

3.2. Features

A recording G is loaded with default sample rate and applied short
time Fourier transform (STFT) with a Hanning window size of 1024
and hop length of 512 samples. Mel filters with bands of 128 are
used to transformed STFT spectrogram to Mel spectrogram. STFT
and log-Mel spectrograms are calculated by the logarithm to get log
spectrograms ZC . We extract consecutive frames % of 64, 128 or
256, and frequency bins � 128 or 320 for generating features. 128
is the number of Mel filters for generating log-Mel spectrogram,
and 320 is the bins of frequency between 1k to 6k Hz to get STFT
spectrogram.

3.3. Experimental methods

We conducted our experiments using the DCASE 2021Challenge
Task 2 dataset. To verify the performance, we compared the follow-
ing models:

Baseline:The organizers provide a MobileNetV2-based base-
line. This baseline tasks log-Mel spectrogram with bands of 128 to
identify from which section the observed signal is generated.

DPRNN:The original dual-path RNN used for time-domain
speech separation [7]. DPRNN tasks log-Mel spectrogram with
bands of 128 as input. We use three RNN encoders with 1 layer,
and inside the encoder we use one directional GRU as RNN layers.

DPTrans:The proposed DPTrans is introduced in Section 2.
We use 3 DPTrans encoders with 1 Transformer encoder layer and
the head of self-attention is set to 8. Moreover, DPTrans takes log-
Mel and STFT spectrograms as input. The % of log-Mel spectro-
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Figure 2: Overview of task2 datasets.

gram is set to 64, 128 and 256 and � is 128. The % of STFT spec-
trogram is set to 64 and � is 320.

Settings of experimental methods are listed in Table 1. To deter-
mine the anomaly detection threshold, we assume that �(·) follows
a gamma distribution. The parameters of the gamma distribution
are estimated from the histogram of �(·), and the anomaly detec-
tion threshold is determined as the 90th percentile of the gamma
distribution.

3.4. Data augmentation methods

Mixup:Data augmentation is an effective way to improve gener-
alization and prevent overfitting of the neural networks. In our
system, we employ mixup as the data augmentation method in the
training stage [8]. The mixup operations on the training samples are
as follows:

G̃ = _G8 + (1 − _)G 9 (5)

~̃ = _~8 + (1 − _)~ 9 , (6)

where G8 and G 9 are the input features, ~8 and ~ 9 are the correspond-
ing target labels and _ ∈ [0, 1] is a random number drawn from the
beta distribution.

Specaugmentation:SpecAugment [9] is a simple but effective
method which was proposed for augmenting speech data for speech
recognition. SpecAugment contains frequency masking and time
masking applied on spectrogram. The frequency bins and time
frames are randomly masked by random number of masks with ran-
dom width.

4. RESULTS AND DISCUSSION

Experimental results are given in the following Table 2. In Table 2,
we present AUC results of each machine type of baseline and eight
experiments .

4.1. Comparison with frame length

From Table.2, we can see that ToyTrain, gearbox, pump and valve
benefit from different larger consecutive frames %, but the perfor-
mance of ToyCar, fan and slider rail are worse with bigger value
of %. The sound of valve happens in short frames, and the sound
of ToyTrain only occurs in the middle of a recording. The above
facts lead to lots of irrelevant spectrograms, which may effect ex-
tracting the acoustic pattern of these machines. Thus, longer frame

length may contain more relevant sounds and it is better for extract-
ing distinguishable acoustic pattern. But the sound of slider rail
could happen in relative short frames, which may reveal that proper
frame length is critical for recognizing machine sounds.

4.2. Comparison with features

Comparing the results of STFT and log-Mel spectrogram, STFT
achieves better performance than log-Mel on most of the machines.
Most of the machines have detailed differences in relative higher
frequencies, STFT provides higher resolution in high frequencies
and achieve better performance.

4.3. Comparison with encoder settings

The AUC results of exp3 and exp4 show that the increasing of en-
coders’ number provides better performances on most of the ma-
chine types.

4.4. Comparison with methods

Compared with baseline and DPRNN in Table.2, DPTrans achieves
much better results of each machine type. Moreover, it is faster for
training DPTrans than baseline and DPRNN, and the need of GPU
memories is much less than baseline. The computational perfor-
mance of different methods are shown in 3.

4.5. Submissions

The final submission are conducted on the evaluation dataset of
task2, in which the sections of each machine are changed. The ex-
periment methods of submission are listed in Table.4, in which the
submission3 is seperately trained and tested on the data of source
and target domain.

5. CONCLUSION

In this paper, we present DPTrans, a novel dual-path Transformer-
based neural network, for anomalous machine sounds monitoring.
In our approach, the time-frequency acoustic representation is mod-
eled by consecutive DPTrans encoders. In each DPTrans encoder,
the acoustic representation is modeled sequentially on frames and
then on frequencies by Transformer encoders. Finally, we averaged
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frame(P) frequency bins(F) net feature encoders layers heads
baseline 64 128 MobileNetV2 log-Mel / / /

exp1 64 128 DPTrans log-Mel 3 1 8
exp2 128 128 DPTrans log-Mel 3 1 8
exp3 256 128 DPTrans log-Mel 3 1 8
exp4 64 128 DPTrans log-Mel 4 1 8
exp5 64 320 DPTrans STFT 3 1 8
exp6 256 320 DPTrans STFT 3 1 8
exp7 64 128 DPRNN log-Mel 3 1 /
exp8 128 128 DPRNN log-Mel 3 1 /

Table 1: Settings of experimental methods.

ToyCar ToyTrain fan gearbox pump slide rail valve
baseline 0.5958 0.5916 0.6466 0.6824 0.642 0.6262 0.5707

exp1 0.5988 0.5652 0.7046 0.7188 0.6885 0.7420 0.7224
exp2 0.5749 0.6221 0.6974 0.6737 0.7164 0.7411 0.7592
exp3 0.5774 0.6125 0.6787 0.7246 0.6337 0.7234 0.6790
exp4 0.6355 0.6013 0.7361 0.7531 0.7043 0.7282 0.7308
exp5 0.5942 0.6523 0.7426 0.7197 0.7443 0.7500 0.7683
exp6 0.5845 0.6864 0.7249 0.5955 0.7217 0.6883 0.8161
exp7 0.5485 0.4873 0.6273 0.6663 0.6205 0.6241 0.6178
exp8 0.5365 0.6094 0.6359 0.6145 0.6271 0.6237 0.6203

Table 2: AUC scores of experiments.

time(per epoch) memory(GPU)
baseline 67s 10951MB

DPTrans(exp1) 53s 1943MB
DPRNN(exp7) 57s 1113MB

Table 3: Computational performance of different methods.

submission1 exp1
submission2 exp5
submission3 exp1-sep
submission4 ensemble of exp1, exp2 and exp5

Table 4: Submissions of task2.

the negative logit of the predicted probabilities for the correct sec-
tion to get the anomaly scores. AUC results of comparing methods
are calculated on the task2 development dataset of DCASE2021. It
can be seen that DPTrans can improve the performance of each ma-
chine type, and the resolution of spectrogram in high frequencies
is important for recognizing anomaly sound. Moreover, the com-
putational performance of DPTrans are superior to the comparing
methods.
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