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ABSTRACT

This paper describes our submission to the DCASE 2021 Task 2
challenge. The objective is identifying whether the sound emitted
from a machine is normal or anomalous without having access to
large amounts of anomalous samples. Our anomaly score calcula-
tor system is a combination of two models: i) AutoEncoder-based
unsupervised training and ii) EfficientNet-based supervised model.
To alleviate the problem of domain shift, we train the models with
contrastive loss and hard example mining manner, which leads to
a substantial improvement with regards to the main omega eval-
uation metric. Further we investigate the use of median-filtering,
timemasking, time shifting and mixup augmentation for this task,
which further boosts performance. Our best single model submis-
sion achieves an official omega score of 71.72, 70.05, 72.14, 67.26,
66.17, 71.97, 68.47 for Fan, Gearbox, Slider, Toy Train, Toy Car,
Pump, Valve on the development dataset, respectively.

Index Terms— Unsupervised anomaly sound detection, Au-
toEncoder, Convolutional neural networks, Few shot learning.

1. INTRODUCTION

Anomaly sound detection has a wide range of applications, such as
Machine Condition Monitoring (MCM). The aim of acoustic MCM
is to monitor whether a machine is working properly through the
sound signal collected by a microphone. This technology can help
realize unattended factories, and thus reducing labor costs.

The DCASE 2021 Task 2 [1] has two main challenges: i) only
normal sound clips are provided as training data and ii) the training
data and the test data are in different domains. These restrictions
reflect the problems encountered when applying anomaly sound de-
tection system to real factory scenes, where it is changeable and
difficult to collect exhaustive anomalous sounds.

The main idea of unsupervised anomaly sound detection is to
learn the properties of the normal sounds, and then classify sam-
ples as anomalous or normal by the deviation of the sample from
the normal sound properties. Statistic based methods such as Hid-
den Markov Model [2] and Gaussian Mixture Model [3] attempt
to model the probability distribution of normal sound, and deter-
mine whether the sound is abnormal by posterior probability. The
Non-negative Matrix Factorization method [4] and Autoencoder
method [5] are both trained to compress and reconstruct normal
sounds, such that those models will predict large reconstruction er-
rors when encountering abnormal sounds.
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Figure 1: The overall architecture used in this work. A spectro-
gram feature is first extracted from an input waveform. Then the
feature is fed into two separate models: An Autoencoder (AE) and
a EfficientNet-B0. The model is jointly optimized to reconstruct the
input spectrogram, a section label and minimize the contrastive loss
between hidden representations.

Another modern type of approach fitting to the DCASE2020
and DCASE2021 datasets is supervised anomaly detection. Since
the recent DCASE 2020 competition, the training data is composed
of normal sounds from different operating conditions with different
section IDs. The main idea for supervised anomaly detection is to
use the section ID as a label and perform classification. Since we
have access to the section ID during testing, a classifier could per-
form anomaly sound detection by identifying misclassified samples
as anomaly sounds. In the previous competition, supervised classi-
fiers have seen to perform well [6, 7, 8].

Inspired by the recent success of contrastive learning ap-
proaches for self-supervised audio pretraining [9, 10, 11], we aim to
enhance our model’s capability to detect unseen events by linking
multiple views together. In order to solve the challenges within the
DCASE2021 Task2 dataset, our proposed system is a novel com-
bination of two mainstream anomaly detection models trained with
an additional contrastive loss function.

The paper is structured as follows: In Section 2 we introduce
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our approach. Further, in Section 3 details regarding the dataset and
experimental setup are provided. Results can be seen in Section 4
and the conclusion is given in Section 5.

2. PROPOSED APPROACH

Our approach is the fusion of two individual approaches: unsuper-
vised autoencoder-based training combined with a supervised con-
volutional neural network (CNN). The architecture can be seen in
Figure 1.

2.1. Autoencoder-based unsupervised classification

Our autoencoder (AE) baseline model is trained to reconstruct train-
ing samples. The motivation is that a well trained AE will produce
a low error if a new data sample has been seen during the training
phase (normal sample) and a large error when it encounters unseen
anomalous sounds. Formally, let x be an input sample and AE be
the autoencoder, our training objective follows:

AE(x) 7→ x̂,

Lunsup(·) = LAE(x) = LMSE(x̂− x),
(1)

where the training loss is chosen to be the mean square error (MSE).

2.2. EfficientNet-based supervised classification

Our supervised approach uses the provided section ID as classifi-
cation target. The model outputs the softmax value that is the pre-
dicted probability for each section. Formally, for a sample x and
corresponding one-hot target y, we compute the standard cross en-
tropy (CE) loss, as seen in Equation (2).

CNN(x) 7→ ŷ,

Lsup(·) = LCE(ŷ, y) = − 1

N

N∑
i

yi log ŷi,
(2)

where CNN represents the CNN-based classifier and N the number
of samples. Then the anomaly score A(x) is calculated as:

A(x) = log
1− ŷi
ŷi

, (3)

where ŷi is the softmax output for the correct section. Note that if
the sample x is divided into consecutive segments (x1, x2, ..., xP ),
the anomaly score will be 1

P

∑P
i A(xi).

2.3. Proposed contrastive semi-supervised learning

We train these models with an additional contrastive loss [12]. The
contrastive loss Lcontrastive is added between the hidden representa-
tions of both models (vAE,vCNN) as:

p = vAE,

u = vCNN,

Lcontrastive(·) = −
∑
i

log
exp(〈ui,pi〉/ρ)∑
j 6=i exp(〈ui,pj)〉/ρ)

,

(4)

where 〈, 〉 represents an inner product, ρ ∈ R is a scalar hyperpa-
rameter and vi,j ∈ R256 are hidden vector representations obtained
by both model via projection. Concretely speaking, we transform

the output vector of Autoencoder’s bottleneck layer and Efficient-
Net’s feature layer into same dimension by linear transformation,
then map representations to the space where contrastive loss is ap-
plied via a shared MLP projection layer with one hidden layer. So
to say, our approach aims to obtain two different representations of
a single sample, which is reminiscent of SimCLR [9], unsupervised
data augmentation (UDA) [13] and other semi and self-supervised
approaches.

Ltotal = Lunsup + Lsup + Lcontrastive (5)

The final loss for optimization can be seen in Equation (5).

2.4. Data Augmentation

Additionally to the above techniques, we explore the use of data
augmentation techniques. Regrading conventional techniques, we
explore the use of Mixup [14] along with time masking and shifting
for model training. Further, our intuition is that the input audio data
contains large amounts of short-time noise, thus an input feature
might contain a surplus of unreliable information, which can affect
the performance of our supervised training method. We propose a
median filtering approach applied on the input spectrogram feature
along frequency axis aiming to reduce distracting noise.

3. EXPERIMENTAL SETUP

Log Mel-spectrogram (LMS) features are chosen as the default
front-end feature for the task. Overall, seven models are trained
in our approach, one for every machine type.

For the supervised CNN training, each 128-filter LMS is ex-
tracted from a 64 ms window with a stride of 32 ms, resulting in an
approximately 128× 311 dimensional input tensor. If segments are
shorter than 10 seconds (or 311 samples), we zero-pad the input to
the longest sample within a batch. We also explore using the model
pretrained on Audioset [15].

Regarding the AE training, we follow the baseline approach by
combining a 2 left-right frame window of a single feature into a
single input vector of size 640 (128 ∗ 5). All experiments are run
for 300 epochs, with learning rate halving every 30 epochs. The
batchsize is set to 32 for training and we set the hyperparameter
ρ = 0.07. Our proposed median filtering approach uses a window
size of 30 frames for each filter bank respectively.

PyTorch [16] was used as the default neural network toolkit.

3.1. Evaluation metric

The evaluation metric used in the challenge are the area under curve
(AUC) and partial-AUC (pAUC) scores respectively. The scores are
defined as:

AUCm,n,d =
1

N−N+

N−∑
i=1

N+∑
j=1

H(Aθ(x+j )−Aθ(x−i )),

pAUCm,n,d =
1

bpN−cN+

bpN−c∑
i=1

N+∑
j=1

H(Aθ(x+j )−Aθ(x−i )),

(6)

where m represents the index of a machine type, n represents the
index of a section and d = {source, target} represents a domain.
The final official score Ω is computed as the harmonic mean (h) of
the AUC and pAUC scores:
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Model Fan Gearbox Slider Toy Train Toy Car Pump Valve Avg.

Autoencoder Baseline 57.90 58.64 60.87 57.50 56.99 57.93 51.94 57.39
MobileNet Baseline 62.43 63.04 58.05 54.49 56.53 59.68 54.57 58.39
EfficientNet-B0 66.11 62.21 67.46 53.39 55.47 63.25 67.06 62.14
+ Pretrain 68.03 65.60 61.78 58.91 61.68 67.46 68.47 64.56
+ Pretrain, Mixup 67.14 64.17 68.19 59.44 65.61 68.64 67.02 65.74
+ Pretrain, Median Filter, Mixup 66.06 67.27 65.42 65.10 57.30 62.24 57.73 63.02
+ Median Filter 68.12 67.32 67.47 57.32 60.52 65.68 56.28 63.24
+ Median Filter, Mixup 71.72 70.05 72.14 67.26 66.17 71.97 56.82 68.01
S1 (Best Single Model) 71.72 70.05 72.14 67.26 66.17 71.97 68.47 69.68
S2 (Mean Anomaly Score Ensemble) 71.86 72.20 70.63 67.50 64.40 71.66 56.25 67.78
S3 (Max Anomaly Score Ensemble) 67.14 76.85 71.38 68.90 67.83 74.53 58.71 69.33
S4 (Mean softmax Ensemble) 73.94 72.42 73.89 67.32 66.71 73.57 57.07 69.27

Table 1: Main results proposed in our work for the DCASE 2021 Task2 challenge on the held-out development dataset in regards to the main
evaluation metric Ω (see Equation (7)). Note that a single model is trained for each machinetype. The average performance across machine
types is also provided. The submissions are S1 and S2.

Layer Output size Trainable

Input 2560 7
LMS 128× 5 7
Reshape 640 7
Enc-Block1 128 3
Enc-Block2 128 3
Enc-Block3 128 3
Enc-Block4 128 3
Bottleneck 32 3
Dec-Block1 128 3
Dec-Block2 128 3
Dec-Block3 128 3
Dec-Block4 128 3
Output 640 3

Table 2: Autoencoder architecture used in this work. Different to
the baseline, we use a smaller bottleneck.

Ω = h
{

AUCm,n,d, pAUCm,n,d
}

(7)

3.2. Dataset

The data used for this task consists of running sounds of seven
machine types being “ToyCar”, “Fan”, “ToyTrain”,“Valve”, “Gear-
box”, “Silder” and “Pump”, including two recent machine audio
datasets, ToyADMOS [17] and MIMII [18].

Notably all provided data samples by the challenge authors
have a length of 10 seconds and each section as well as machine
type have a near uniformly distributed duration. The overall data
length is 70 hours of which the large majority belongs to source do-
main. Because of the imbalance of dataset, we applied a weighted
sampler to ensure 20% samples come from target domain during
trainning.

The two models used in this work are described. First, our Au-
toencoder is similar to the one provided by the challenge baseline,
where we changed the bottleneck block size to 32 as seen in Table 2.
Second, the EfficientNet-B0 architecture is directly taken from [19],
where our approach differs from the standard architecture:

• We use global average and max pooling (GAMP) as our aggre-
gation method compared to the standard global average pool-
ing (GAP).

• The number of input channels is set to 1.

During training both the AE and EfficientNet-B0 models are jointly
optimized given the total loss Equation (5). During evaluation,
we remove the AE branch and only obtain predictions from the
EfficientNet-B0 model used to score our results.

4. RESULTS

The results are displayed in Table 1. As it can be seen, our
EfficientNet-B0 baseline approach, which uses the proposed con-
trastive loss training paradigm, is effective in improving the aver-
age result. Furthermore, using our proposed median filtering and
mixup data augmentation techniques leads to large gains against the
baseline Mobilenet and Autoencoder approaches on most machine
types except Valve. Meanwhile, we can get a large gain on Valve
when using pretrained model. However, experimental result shows
that finetuning pretrained model with the median filter is not a good
choice, due to the change of the distribution of input spectrogram.

Based on existing experimental results, our submission system
1 (S1) is an ensemble of single model that perform best on each ma-
chine type respectively. Submissions system 2 to 4 (S2 to S4) adopt
different model fusion methods on 5 best models for each machine
type. S2 outputs average anomaly score of 5 models, while S3 out-
puts maximum anomaly score. S4 calculates anomaly score using
the mean of model’s softmax output. Due to the poor performance
on Valve dataset, we use the model for Valve from S1 to replace
Valve models in other submissions.

5. CONCLUSION

This paper proposes our submission to the DCASE2020 Task2 chal-
lenge. Our work includes a novel contrastive loss training scheme
for semi-supervised training. Our proposed single model approach
improves against the baseline (in terms of Ω) by an average of 10
points absolute on the development dataset, while not being signifi-
cantly larger in size than the baseline.
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