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ABSTRACT 

In this technical report, we describe our submission system for 

DCASE2021 Task4: sound event detection and separation in do-

mestic environments. Our model employs conformer blocks, 

which combine the self-attention and depth-wise convolution net-

works, to efficiently capture the global and local context infor-

mation of an audio feature sequence. In addition to this novel ar-

chitecture, we further improve the performance by utilizing a 

mean teacher semi-supervised learning technique, data augmen-

tation for each sound event class. We demonstrate that the pro-

posed method achieves the PSDS-1 and PSDS-2 score of 

34%,55.7% on the validation set, outperforming that of the base-

line score. 

Index Terms— One, two, three, four, five 

1. INTRODUCTION 

This technical report describes our submission system for 

DCASE2021 Challenge Task4: sound event detection (SED) and 

separation in domestic environments [1]. The goal of this task is 

to build a system for the detection of sound events using real data 

either weakly labeled or unlabeled and simulated data that is 

strongly labeled (with timestamps). To address this task, we pro-

pose two neural network models that utilize the self-attention 

mechanism; 

• Conformer-based model [4].  

• CRNN model.  

These models can efficiently capture both local and global context 

information of an audio feature sequence through the stack of 

CNN and self-attention layers. Besides, to further improve the per-

formance, we implement  

• semi-supervised learning based on mean teacher [5],  

• data augmentation techniques, such as add-noise [6] and mixup 

[7],  

• post-processing refinement,  

We conduct experimental evaluations on the DCASE2021Task4 

validation set to investigate the effectiveness of the proposed net-

work architecture and each of the implemented techniques. The 

experimental results show that the proposed models outperform 

the baseline system, achieving the PSDS-1 and PSDS-2 score of 

34%,55.7% on the validation set with the best single system. 

2. FROPOSED METHOD 

2.1. Feature extraction 

Subheadings should appear in lower case (initial word capitalized) 

in boldface. They should start at the left margin on a separate line. 

We extract 64-dimensional log-Mel filterbanks from the input au-

dio. The window size and the hop size are 2048 points and 156 

points, respectively, in 16 kHz sampling. We fix the length of the 

feature sequence to 256 frames (corresponding to around 10 sec-

onds). To make the length of feature sequences the same, we per-

form zero-padding for shorter sequences and truncation for longer 

sequences from their last frames. 

2.2.  Network architecture 

Inspired by the great success of the self-attention architectures in 

various fields [2]–[4], [8], [9], we propose a neural network mod-

els for SED; Transformer-based model and Conformer-based 

model. The Transformer-based model consists of three modules; a 

CNN-based feature extractor, Transformer blocks, and a position-

wise classifier [3]. The architecture of the CNN-based feature ex-

tractor follows the baseline system of DCASE2021 Task4 [1], 

which consists of three or seven convolution layers. To match with 

the input size, we slightly modify the network, which add a liner 

layer to convert the dims of predicted into labels. The Transformer 

block follows the architecture in [2], which consists of a multi-

head self-attention layer, a layer-normalization layer, and a linear 

layer with a rectified linear unit (ReLU) activation function fol-

lowed by another layer normalization. The final position-wise 

classifier is a simple linear layer to calculate the final outputs that 

correspond to the sound event types.  

The designed CRNN system and the baseline system are basically 

the same in the framework. The main difference is reflected in the 

addition of an additional layer of  LSTM module between the CNN 

module and the GRUmodule. The input and output dimensions of 

the LSTM module are consistent with the GRU module, but The 

number of neurons in the hidden layer is twice that of the GRU 

module, and the number of layers is half that of the GRU module. 

2.3. Semi-supervised learning 

To further improve the performance, we employ the mean teacher 

technique [5] as one of the typical semi-supervised training meth- 
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ods capable of using unlabeled data in training. We use a mean 

square error function as the consistency criterion, and set the expo- 

nential ramp-up steps [13] and the consistency cost to 10,000 and 

2.0, respectively.  

2.4. Data augmentation 

For data augmentation, we employ time-shifting [6] and mixup [7]. 

The time-shifting shifts a feature sequence on the time axis, and 

overrun frames are concatenated with the opposite side of the se- 

quence. We randomly choose the shift size by sampling from a 

normal distribution with a zero mean and a standard deviation of 

90. The use of the time-shifting is helpful for preventing the net- 

work from inappropriately learning the location information over 

the sequence.  

The mixup smoothes out the decision boundary by adding pseudo 

data generated by mixing different data points (x1 , x2 ) and the 

corresponding labels (y1 , y2 ). The mixup is same with the [7]. 

2.5. Post-processing 

To determine the sound event activation, we perform thresholding 

for the network output posterior. Then, we perform median filter 

ing as post-processing to smooth the detected activation sequence.  

Since each sound event has different characteristics, such as tem- 

poral structures, the optimal post-processing parameters depend on 

the individual sound events. Hence, we determine the optimal 

post- processing parameters for each sound event using the valida-

tion set. In our system we set the  median filter size from 7,13,41 

respectively. 

3. EXPERIMENTAL EVALUATION 

3.1. Experimental conditions  

We conducted experimental evaluations using DCASE2021 

Task4 dataset [1]. The dataset included 2,584 audio clips with a 

strong label, 1578 audio clips with a weak label, and 14,412 unla-

beled audio clips. Since the audio clips were collected from 

YouTube, the dataset included various audio clips with different 

recording settings (e.g., 16 kHz sampling rate vs. 44.1 kHz sam-

pling rate). To address this issue, we first converted all of the au-

dio clips to be 1 ch, 16 bit, and 16 kHz sampling rate using sox 

[14]. To verify the performance, we compared the following 
models:  

Baseline: The DCASE2021 Task4 official baseline system [15]. 

The architecture was a convolutional recurrent neural net- work 

(CRNN), and it was trained with the mean-teacher semi-super-

vised learning technique [5]. We used the num- bers provided in 

the official HP. 

Conformer (Ours): The proposed  Conformer-based model. The 

number of attention units and that of the attention heads were 256 

and 4, respectively. The dropout rate was set to 0.1.  

CRNN (Ours): The proposed CRNN-based model. The detailed 

network configuration information can be seen in chapter 2.2 

We used RAdam [16] optimizer with a batch size of 24 and a learn-

ing rate of 0.001. We used a GPU (NVIDIA 1080ti) to train the 

models. It took around 12 hours to finish the training. The detailed 

training condition is shown in Table 1.  

The evaluation metrics were the poly- phonic sound event detec-

tion score (PSDS) [17]. These metrics were calculated using sed 

eval toolkit [18]. The segment length in the segment-based evalu-

ation was set to 1 second. We computed PSDS using 50 thresholds 

from 0.01 to 0.99.  

Table 1: Network training configuration. 

 

Training Samples 

strong =2584 

weak = 1578 

unlabeled = 14412 

Batch size 6,6,12 

Epochs 200 

Optimizer RAdam 

Learning rate 0.001 

Consistency cost 2.0 

3.2. Experimental Result 

We investigated the effects of the model architecture. In a compar-

ison of the model architectures, we used the post-processing and 

the mean teacher learning but we did not use the data augmentation 

for the proposed method. From the result shown in Table 2, we can 

observe that both the proposed models outperform the baseline 

even if we do not use data augmentation, revealing the effective-

ness of the self-attention architecture for SED.  

Next, we investigated the effects of the number of Conformer 

blocks. The result in Table 3 shows that the number of blocks af-

fects the performance and 4 was the best. We used this configura-

tion in the following experiments.  

Table2: Effects of model architectures. 

Method PSDS-1[%] PSDS-2[%] 

Baseline 33.6 52.7 

CRNN(our) 34.0 52.3 

Conformer 13.3 55.7 
 

4. COLCLUSION 

In this technical report, we have described our submission system 

for DCASE2021 Task4. Our system has been developed by using 

the self-attention architecture including the Conformer blocks, the 

data augmentation techniques, the class-dependent post-pro-

cessing. The experimental results using the validation set have 

demonstrated that our system outperforms the baseline. In future 

work, we will investigate the class-wise performance more care-

fully to develop more effective model ensemble technique, and 

further integrate source separation techniques to sound event de-

tection. 
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