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ABSTRACT

This technical report presents our submitted system for the
DCASE 2021 Challenge Task1B: Audio-Visual Scene Classifica-
tion. Focusing on the audio modality only, we investigate the use of
two common feature representations within the audio understanding
domain, the raw waveform and Mel-spectrogram, and measure their
degree of complementarity when using both representations for fu-
sion. We introduce a new model paradigm for acoustic scene classi-
fication by fusing features learned from Mel-spectrograms and the
raw waveform from separate feature extraction branches. Our ex-
perimental results show that our proposed fusion model has a 4.5%
increase in validation accuracy and a reduction of .14 in validation
loss over the Task 1B baseline audio-only sub-network. We further
show that learned features of raw waveforms and Mel-spectrograms
are indeed complementary to each other and that there is a consis-
tent classification performance improvement over models trained on
Mel-spectrograms alone.

Index Terms— Audio classification, Acoustic scene classifica-
tion, Feature fusion, Multi-modal features.

1. INTRODUCTION

Mel-spectrograms are the de-facto audio feature representation and
they have been widely used throughout the entire history of au-
dio understanding. Mel-spectrograms are created by calculating the
short-time fourier transform (STFT) of an audio signal, then passing
the STFT frequency responses through band-pass filters spaced on
the Mel(logarithmic)-scale and often further passed through a loga-
rithmic compression to replicate the human’s non-linear perception
of signal pitch and loudness, respectively.

With the advent of deep neural networks, many methods have
been introduced that perform audio understanding tasks such as
acoustic scene classification (ASC) and sound event detection that
use Mel-spectrogram representations of audio as the input to a con-
volutional neural network [1, 2]. Researchers also explored the
use of other feature representations such as the gammatone and
Constant-Q (CQT) spectrogram, and Mel Frequency Cepstrum Co-
efficients (MFCC) [3, 4]. [5] found that fusing these representations
together allows for a network to learn complementary features, cre-
ating a stronger model for ASC.

In parallel, other researchers utilize the raw waveform as the
input into neural networks, bypassing the need for hand crafted

features [6, 7]. Waveform-based networks are able to be trained
end-to-end, while networks that utilize spectrograms need to cre-
ate these hand crafted features that may often be sub-optimal for
the given task. Regardless, many state of the art methods in ASC,
speaker recognition, sound event detection, and other tasks still uti-
lize spectrogram representations [8, 9]. Further, [10] introduced a
fully learnable variation of spectrograms, where they can be trained
end-to-end to automatically find optimal parameters.

As a result, there is still no clear distinction as to the best feature
representation that performs strongly across various audio under-
standing tasks. Works such as [7, 11] have begun to bridge together
methods using both waveform and spectrogram representations in a
fusion setting. Although a performance improvement is exhibited,
these methods do not deeply explore the degree of complementarity
and effects of fusing these features together.

In this report, we investigate waveform and Mel-spectrogram
feature fusion and propose a new acoustic scene classification
model that learns complementary features from both modalities.
We evaluate our proposed model using the DCASE 2021 Challenge
Task 1B dataset to prove the effectiveness and complementarity of
waveform and Mel-spectrogram feature fusion.

2. DATASET

2.1. DCASE 2021 Task 1B: Audio-Visual Scene Classification

Task 1B is based on the TAU Audio-Visual Urban Scenes 2021
dataset, a dataset containing synchronized audio and video record-
ings from 12 European cities in 10 different scenes. Audio is
recorded using a Soundman OKM II Klassik/studio A3 microphone
paired with a Zoom F8 audio recorder, sampled at 48kHz at a 24-
bit resolution. Video is recorded using a GoPro Hero5 Session. The
dataset contains 12,292 samples of each modality spread across the
10 scenes. The provided train/validation split consists of 8,646 sam-
ples in the training set and 3,645 samples in the validation set. [12]

2.2. Data Preprocessing

For Task 1B, we input the raw waveform and its generated Mel-
spectrogram into their respective feature extractors. According to
the Task 1B rules, we split the development dataset samples into
1 second audio files to perform classification at the 1 second level.
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Table 1: Detailed overview of proposed model design.
Spectrogram Branch Fs

Input shape [128,188]
2D CNN kernel size 3× 3
2D CNN stride 1
Filter responses 32, 64, 128, 256
Max pooling size 2× 2
Global average pooling output ls 〈1024〉
Waveform Branch Fw

Input shape [48000]
Sinc kernel size 251
Sinc stride 1
1D CNN kernel size 7
1D CNN stride 1
Filter responses 32, 64, 128, 256
Max pooling size 6
Global average pooling output lw 〈1024〉
Classification Layers Fc

Input shape (lw + ls) 〈1024〉
Dropout p 0.3
Dense layer outputs 512, 256, 10
Output classes 10

This brings the training dataset to 86,460 samples and the valida-
tion dataset to 36,450 samples. Audio files are sampled at 48kHz
and therefore have a sample length of [48000]. In addition, the au-
dio waveforms are scaled to the range [0, 1]. Mel-spectrograms are
generated using 128 frequency bins, a hop length of 256 samples,
and a Hann window size of 2048 samples, creating a final size of
[128× 188]. The Mel-spectrograms are also passed through a loga-
rithmic compression and then normalized at an instance level using
Z-Score normalization such that each sample has a mean of 0 and
unit standard deviation.

3. PROPOSED METHOD

To investigate and understand the complementarity between learn-
ing features from Mel-spectrograms and raw waveforms, we de-
signed a fusion model based on two CNN feature extractors, and
a unified classification layer. Figure 1 illustrates the design of our
model. The spectrogram branch, Fs, is comprised of repeating 2D
CNN blocks followed by a max pooling operation. The CNN blocks
contain a convolution layer using a kernel size of 3 × 3, followed
by a batch normalization and a Leaky ReLU nonlinear activation.

The waveform branch, Fw, is of a similar structure, however
the two-dimensional convolutional layers are replaced with one-
dimensional convolutions with a kernel size of 7. In addition, the
first convolutional layer in the waveform branch are parameterized
to Sinc functions, as described in [13].

As both branches are working with different-sized input data,
the feature responses from each branch vary in size. We utilize
global average pooling (GAP) layers to condense both waveform
and spectrogram features into a vector of 1024 units, denoted by lw
and ls, respectively.

Feature fusion of both feature extraction branches is accom-
plished at the latent representation level, where features for both
the waveform and spectrogram branch are extracted independently,
then fused together into a unified representation. Fusion is accom-
plished using elementwise-summation such that the final latent rep-

Figure 1: Illustration of the proposed fusion model.

resentation (lw + ls) has the same shape as its constituents.
The classification layers, Fc, take (lw+ls) as input and perform

the final classification using two repeating dense blocks, as shown
in Figure 1. We use dropout layers with p = 0.3, followed by lin-
ear layers, a Leaky ReLU activation, and batch normalization. The
classification ĉ of the set of classes c ∈ C of an audio sample with
its raw waveform xw and Mel-spectrogram xs can be described as:

ĉ(xw,xs) = argmax
c∈C

Fc(Fw(xw) + Fs(xs)) (1)

Table 1 describes in detail the configuration of both feature ex-
traction branches and the final classification layers. For our experi-
ments, we utilize three variations of the described model to investi-
gate modality complementarity:

Spectrogram sub-network: The spectrogram branch in Fig-
ure 1 is used independently with the classification layers, without
the waveform branch. In this model, training is conducted only us-
ing Mel-spectrograms, omitting Fw(xw) from (1).
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Table 2: Waveform sub-network data augmentation strategies.
Method Accuracy % Log Loss
No augmentation 61.32 1.149
Mixup (α = 0.2) 63.00 1.080
Time masking 61.76 1.161
Pitch shifting 59.25 1.164
Time stretching 61.32 1.206
Time shifting 62.60 1.172
Random gaussian noise 58.04 1.182
Mixup + Time shifting 64.19 1.066

Waveform sub-network: The waveform branch in Figure 1 is
used independently with the classification layers, without the spec-
trogram branch. In this model, training is conducted only using raw
waveforms, omitting Fs(xs) from (1).

Fusion model: Both the spectrogram and waveform branch
are trained end-to-end with their respective inputs. The latent rep-
resentations of each branch are fused together for classification.

4. TRAINING CONFIGURATION

All models are trained using the SGD optimizer paired with the one-
cycle learning rate scheduler and learning rate range test described
in section 4.1. Training batch size is set to 128 and the models are
trained for 50 epochs. The models were trained on an RTX 6000
GPU with the most complex model taking 1.5 hours to fully train.

4.1. One-cycle Learning Rate Scheduler

The one-cycle learning rate policy [14] was introduced as an exten-
sion beyond cyclical learning rate schedulers, where an initial learn-
ing rate is annealed to a large maximum value, then annealed back
to a value much lower than the initial learning rate, over the entire
training procedure. [14] showed that this procedure leads to faster
training times, in addition using large learning rates for a portion of
the training procedure acts as a form of regularization.

[15] introduced the learning rate range test, a method of pro-
gramatically finding a near-optimal maximum learning rate for the
one-cycle scheduler. We use a modified version of the learning rate
range test described in [15]. Learning rate values λ1, λ2, ..., λn are
sampled over a uniform space and used for a single forward pass
within the model using a batch of training samples. The learning
rate that produces the lowest loss value, λt, is selected as the opti-
mal maximum learning rate, divided by a factor of 10. Due to the
stochasticity of data within batches, we run this operation m times
and take the median learning rate to remove any possible outliers.
The algorithm can be described as:

λmax =
median(λt1 , λt2 , ..., λtm)

10
(2)

We set m = 7 and sample n = 50 learning rates over the
log space of [−7, 2]. We experimented with various learning rate
schedulers and found that the one-cycle scheduler paired with (2)
reduced the number of epochs needed to achieve convergence.

4.2. Data augmentation

We conducted a search to find the optimal data augmentation strate-
gies to improve the classification performance of the proposed

Table 3: Kernel parameterization performance.
Parameterization Accuracy % Log Loss
Unparameterized (normal) 62.20 1.068
Complex-Gabor [10] 42.10 2.006
Sinc [13] 64.82 1.067

Table 4: Model performance compared to challenge baseline.
Model Accuracy % Log Loss # Params
Audio baseline [16] 65.1 1.048 -
Wave. sub-network 61.79 1.051 1.0M
Spec. sub-network 66.29 1.046 1.1M
Wave. + Spec. fusion 69.58 0.907 1.4M

models. We tested various augmentations on the raw waveform:
mixup (50% application chance), time masking, pitch shifting, time
stretching, time shifting, and adding random gaussian noise. As
shown in Table 2, time shifting, time masking and mixup are bene-
ficial to model performance. However, when combining both mixup
and time stretching together, we get a further improvement in clas-
sification accuracy beyond any other combination. For consistency,
we utilize time shifting and mixup augmentations on the spectro-
gram as well. In the fusion setting, time shifting is applied indepen-
dently to the waveform and spectrogram, such that both modalities
may be shifted by varying degrees. Further research should be con-
ducted in studying the effects of using independent data augmenta-
tions for each modality.

5. EXPERIMENTAL RESULTS

5.1. Waveform Kernel Parameterizations

[13] introduced the use of parameterized Sinc filters for speech
recognition. Further, [10] introduced the use of learnable complex-
valued Gabor filters to extract audio features, similar to Sinc filters.
These methods have shown to outperform normal one-dimensional
kernels as they are less prone to overfitting because they are con-
strained to their respective functions.

Table 3 shows model performance when replacing the first con-
volutional layer of the waveform branch with a parameterized ker-
nel, instead of an unparameterized, fully learnable kernel. We test
real-valued Sinc filters [13] and complex-valued Gabor filters [10]
and compare model performance across these setups. As shown,
using parameterized Sinc filters outperform both the conventional
unparameterized filters in addition to the Gabor filters. Using Sinc
filters also allows us to reduce model complexity and use the filter’s
interpretability to further investigate what is being learned within
the waveform branch.

5.2. Waveform and Spectrogram Feature Fusion

Table 4 demonstrates classification performance of the Task 1B
baseline, compared to the three different model variations proposed.
The waveform sub-network is not able to outperform the baseline in
terms of accuracy and loss, however the spectrogram sub-network
performs marginally better than the baseline in both accuracy and
loss. The fusion model outperforms both the baseline and models
trained on single modalities, specifically a 4.5% improvement in
accuracy and a reduction of 0.14 in loss over the baseline. Further-
more, we see that the fusion model outperforms the spectrogram
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Table 5: Feature fusion methods experiment.
Fusion Method Accuracy % Log Loss # Params
Element-wise sum 69.58 0.907 1.4M
Concatenation 70.85 0.924 1.9M
MFB [17] 70.13 0.943 7.6M

sub-network by 3.3% accuracy and a .14 reduction in loss. This im-
provement shows that there are features being learned within the
raw waveform that are complementary to features being learned
from the Mel-spectrogram, resulting in a more discriminative clas-
sification model.

5.3. Multi-Modal Feature Fusion Methods

Most approaches to multi-modal feature fusion utilize simple lin-
ear methods, such as element-wise summation and concatenation
of vectors and feature maps. A more advanced operation, bilin-
ear pooling, has been shown to capture more dependencies between
vectors being fused. Multimodal Factorized Bilinear Pooling [17]
has been used within the visual question answering domain and
has shown to capture more expressive features than linear meth-
ods while being less computationally expensive than conventional
bilinear pooling.

We experiment using these fusion methods to see whether we
can fuse features in a more expressive fashion. Table 1 and Figure
1 depict the design for element-wise summation fusion. For con-
catentation, latent vectors lw and ls are combined to a final size of
2048 units. This new vector is passed into the classification layers,
with the dense layers outputting 1024, 512, 10 units, respectively.
For MFB fusion, we set k = 3 and o = 1024, as described in [17].
The MFB fusion model has the same design as Figure 1, but the
element-wise summation operation is replaced with MFB.

Table 5 shows the performance of our fusion model when utiliz-
ing element-wise sum, concatenation, and MFB. All methods per-
form similarly, however element-wise summation produces the low-
est validation loss model. Fusion by concatenating latent vectors
results in the highest accuracy model. We select element-wise fu-
sion as it produced the lowest loss in addition to it being the least
computationally expensive operation.

6. ABLATION STUDIES

Although we examine a classification performance improvement
when fusing waveform and spectrogram features, it is important to
validate that the improvement is coming from complementary fea-
tures being extracted from both modalities. As we are performing
late-stage feature fusion, using two separate feature extractors in-
herently increases the size of the model. It may be the case that the
feature extraction branches themselves are underparameterized, and
when adding more parameters the model performs better solely due
to the increase in parameterization and not the second modality.

To test this hypothesis, we expand the waveform and spectro-
gram sub-networks such that their total number of parameters ex-
ceed the fusion model. For both sub-networks, we double each of
the CNN block filter responses, increase latent vectors from 1024
units to 2048 units, and double the classification layer responses.
Table 6 shows these trained expanded sub-networks in comparison
to the original fusion model. Even with the increase in model size,
both of the sub-networks were unable to surpass the performance

Table 6: Parameterization ablation study.
Model Accuracy % Log Loss # Params
Fusion model 69.58 0.907 1.4M
Large spec. sub-network 66.48 1.043 4.2M
Large wave. sub-network 63.44 1.041 3.9M

Table 7: Feature branch training ablation study.
Model Accuracy % Log Loss
Spec. sub-network 66.29 1.046
Fusion spec. branch only 51.33 1.72
Wave. sub-network 61.79 1.051
Fusion wave. branch only 31.51 2.50

of the fusion model, showing that the performance improvement in
the fusion model is from the added modality.

To further understand the differences of each sub-network’s
performance when trained alone or in a fusion setting, we compare
each sub-network to their equivalent sub-network trained in the fu-
sion setting. Examining the performance drop when removing each
feature extraction branch in the fusion model may give clues into
how the branches train alone versus in the fusion setting.

The trained waveform and spectrogram sub-networks depicted
in Table 4 are compared to the fusion model’s respective sub-
network. As shown in Table 7, the sub-networks that are trained
in the fusion setting have a substantial performance loss when re-
moving the opposite sub-network, far below the performance of the
respective sub-network that is trained independently. We infer that
when trained end-to-end, each of the sub-networks in the fusion
model learn to focus on different, specific features that overall im-
prove classification performance.

7. SUBMITTED SYSTEMS

We submitted two systems to the Task 1B challenge. Both models
are trained using the described training procedure on the provided
development training dataset.

Fusion model: Our main submission is the waveform and
spectrogram feature fusion model depicted in Figure 1 and Table
1. This model has 1,351,562 parameters and achieved 69.58% ac-
curacy and 0.907 loss on the development validation dataset.

Expanded Fusion model: The second submission is an ex-
panded version of the fusion model depicted in Table 1. We added
an additional CNN block to the end of each feature branch, with an
output response of 512 filters. The latent vectors are also expanded
from 1024 to 2048 units. This model has 5,422,730 parameters and
achieved 68.56% accuracy and 0.990 loss on the development vali-
dation dataset.

8. CONCLUSION

In this technical report, we describe our submitted systems to the
2021 DCASE Challenge Task 1B. We investigate feature fusion of
two common audio representations, the raw waveform and Mel-
spectrogram, and show that there are complementary features being
learned that improve ASC performance. Our proposed fusion model
utilizes these features to outperform the Task 1B audio baseline by
4.5% accuracy and .14 validation loss.
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