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ABSTRACT

This report describes our submission to task 5 of the 2021 DCASE
challenge. We detail how we processed the data, the model struc-
ture as well as the training procedure. We may submit an extended
version to the DCASE 2021 workshop.

1. OVERVIEW

For this technical report, we assume that the reader is familiar with
the provided Deep Learning baselineﬂ We process the data as Mel
spectrograms at a time resolution of roughly 6ms. On this data,
we perform segmentation: Each frame is classified as either con-
taining an event or not. Any switch from O to 1 is extracted as an
event start; any switch from 1 to O as an event end. Classification
is done using Prototypical networks [[L], where a prototype frame is
computed per class (positive/negative) and a given query frame is
assigned whichever prototype is closest as measured by euclidean
distance. Prototypes are computed using CNNs. Our implementa-
tion is in Python 3, using Tensorflow 2.3 [2], and can be found on
GitHutﬂ In the rest of this report, we provide details on all these
steps.

2. DATA

2.1. Data used

We only use the provided challenge data, consisting of 11 record-
ings with a total duration of 14 hours and 20 minutes for training
and 8 recordings of 5 hours for validation. The former is used in
its entirety for training; the latter is used for model selection exclu-
sively.

2.2. Feature extraction

As a first step, we resample all data to 20,050 Hz. Then we com-
pute Mel spectrograms with a window size of 1024 samples (about
46 ms) and a hop size of 128 samples (about 6 ms or 172 frames
per second). We use 130 mel frequency bins. Afterwards we per-
form PCEN [3]]; however only the first part (low-pass filtering) is
performed at this point; the rest is part of the model (see
[ion 3:2). We use a time constant of 200 ms. All these steps are
performed using librosa [4].

lhttps://github.com/c4dm/dcase-few—shot-bioacoustic/

tree/main/baselines/deep_learning
“https://github.com/xdurch0/DCASE2021-Task5

2.3. Event extraction

For the training data, we use the provided annotations (convert-
ing from seconds to frames) to extract the events for each class
(species). Each event is extracted with a one-frame margin both at
the beginning and the end to prevent events from being cut off. We
also create a binary mask for each event which is 1 in the annotation
window and 0 outside. We ignore events labeled UNK.

Furthermore, we extract the entire dataset as one large “neg-
ative” event with an all-zero mask. This is done to use more of
the training data (since only a small fraction is actually covered by
events) as well as to provide more examples of what should be clas-
sified as zero. Doing this will obviously include actual events in the
negative data, but this is similar to how the model is used on the
evaluation data (see [subsection 3.4). While we presume this does
not have a significant negative impact on training, we did not test
this. Alternatively, it would be possible to use the provided annota-
tions to exclude all labeled event data from the negative set.

In principle, our model can handle events of arbitrary length, as
it is fully convolutional. Still, due to computational considerations
we split events into segments of about 200 ms (34 frames) with a
hop size of about 100 ms (17 frames) in-between. For events shorter
than 34 frames, we simply include the audio after the event to get
a 34-frame segment. Note that this differs from the “tiling” method
used in the baseline.

For each recoding in the validation/evaluation set, we proceed
in a similar manner: The five support events are extracted according
to the annotations (potentially resulting in more segments for long
events). For the negative class, we consider the full recording. For
the query set, we consider the full recording starting at the end of
the fifth annotated event.

3. MODEL

3.1. Framework

Our approach is based on Prototypical Networks [1]]. Given k pos-
sible classes and a support set Sy, of labeled examples per class, a
query sample x is classified as follows:

1. Embed all support samples sy; as well as  using a (learned)
function f, such as a neural network.

2. For each class, compute the prototype as the average of all
support embeddings for that class: P, = % > f(ske).

3. Compute the distance d(f(x), Px) between the query em-
bedding and all prototypes using some distance function d.


https://github.com/c4dm/dcase-few-shot-bioacoustic/tree/main/baselines/deep_learning
https://github.com/c4dm/dcase-few-shot-bioacoustic/tree/main/baselines/deep_learning
https://github.com/xdurch0/DCASE2021-Task5
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4. The predicted class is the one with the lowest distance to the
respective prototype.

In our case:

1. f is a convolutional neural network that embeds an audio
segment, however the embedding has the same temporal res-
olution as the input.

2. Prototypes are then computed using masked average pool-
ing: The segment-level embedding is multiplied by the bi-
nary annotation mask, zeroing-out components correspond-
ing to time steps that are not marked as an event of the rel-
evant class. Then the embedding is summed over time and
divided by the number of non-zero time steps. Thus, proto-
types are averaged not only over multiple segments, but over
frames as well, resulting in prototype frames.

3. For d, we use euclidean distance. This differs from the orig-
inal paper on ProtoNets, which uses the squared euclidean
distance and theoretically justifies this choice. However, we
observed rather unstable training and got bad results using
this distance function, which was alleviated by using eu-
clidean distance.

4. Finally, each frame of the query embedding is classified in-
dependently, according to which prototype frame is closest.

3.2. Architecture

We split our architecture into three parts: Preprocessing, body,
and distance function. For preprocessing, we apply the remaining
PCEN steps of dynamic range compression. Each of the parame-
ters «, d, r and € is learned, with a separate value for each of the
130 input channels, using the default librosa values as initialization.
However, we should note at this point that we barely see these val-
ues change during training. It could be that the parameterization in
log space (like in the librosa implementation) leads to bad gradients.
After PCEN, we apply batch normalization [5] to the spectrogram
“image”. We also apply some light data augmentation: Inputs are
randomly cropped from (34, 130) to (32, 128). Cropping in the fre-
quency axis could be interpreted as pitch shifting the spectrogram.
We also apply zoom on the time axis, zooming between 20% in
and 20% out. This can be interpreted as time-stretching the signal.
All these augmentations are very light, but changing the inputs too
much could easily destroy the identity of the target species, making
augmentation counter-productive.

For the support set, we apply augmentations in a slightly differ-
ent fashion: All possible crops in the time axis are applied, result-
ing in the support set increasing three-fold in number of segments.
It would be possible to do the same for cropping in the frequency
axis, as well as taking several different zooms, to further increase
the size of the support set. We did not do this simply because these
augmentations were added later, and we did not have time to add
this functionality. During inference, cropping is always performed
to the center (except for cropping time in the support set, where once
again all possibilities are enumerated) and no zooming is done.

For the body, we treat the input spectrograms as two-
dimensional one-channel images and apply a stack of two-
dimensional convolutions as our model. An overview of the ar-
chitecture is given in All convolutions use a filter size of
3 x 3. Each convolution is followed by batch normalization and
a SiLU/Swish activation [6} 7} [8]. We also apply light dropout [9]]
(Spatial dropout with pgr.p, = 0.05) and L2 regularization (factor
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Layer ‘ # Filters ‘ Time pooling ‘ Frequency pooling

Encoder 1 32 2 2
Encoder 2 64 2 2
Decoder 1 128 0.5 1
Decoder 2 256 0.5 1

Table 1: Architecture summary. A pooling factor of less than 1
indicates upsampling. The partition into encoder and decoder layers
is somewhat arbitrary and only based on whether a layer applies up-
or downsampling.

le-6) For upsampling, we use nearest-neighbor interpolation. There
are no residual or skip connections; the model is a simple sequence
of layers. Overall, the model has approximately 390,000 parame-
ters.

The distance function is simply euclidean distance, as men-
tioned before. In principle, this part could easily be switched out
for some other function, including a learned one (e.g. see [10]).
However, we got the best and most stable results using euclidean
distance. Note that this function is applied to the flattened em-
beddings, which thus have a dimensionality of N freqs * Mchannelss
i.e. the “height” of the final feature maps times the number of con-
volution channels of that layer. With our architecture, this means
the embeddings are 32 - 256 = 8192-dimensional. This seems ex-
cessively large; however, our attempts to re-design the architecture
to produce smaller embeddings resulted in worse performance.

3.3. Training

The model is trained using “episodes” (refer to [1]] for details). For
each episode, we randomly choose four out of the 19 classes. We
also always draw examples from the negative class. Per class we
use five support samples and a single query sample (all randomly
chosen). Since the training data is highly imbalanced, we oversam-
ple by endlessly repeating the data for each class: This way, a class
that has n samples would simply have all its data used twice in the
time a class with 2n samples would be used once.

Within an episode, we use a standard cross-entropy loss. Tar-
gets are one-hot vectors for the respective class, whereas output
probabilities are computed via softmax using the negative distances
between queries and prototypes as logits. We actually only com-
pute the loss based on the center half of the query frames, since the
first and last quarter are discarded during inference anyway (but see
[subsection 3.4). Since there is strictly speaking no “center half” for
34 frames, we discard 9 frames in the beginning and 8 at the end (or
8 and 7 after random cropping).

For the optimizer, we use Adam with default parameters (in-
cluding a learning rate of 0.001). The learning rate is divided by
two whenever the average per-epoch loss does not decrease for
three epochs, where we arbitrarily define an epoch as 100 train-
ing steps/episodes. Training is stopped if no improvement is seen
for nine epochs (allowing for two reductions in learning rate before
terminating), and the best-performing model is restored. In prac-
tice, models only train for around 50 epochs or so, corresponding
to 5,000 training iterations, making training extremely fast (only a
few minutes — 100 steps only take around five seconds). We also
tried training for longer, forcing 50,000 steps with a cosine learning
rate decay, but found that this gives worse results. We use a single
NVIDIA GeForce 1080Ti for training,
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3.4. Inference

Given a recording to annotate, we first embed the support segments
and compute the prototype as before. To get a “negative” prototype,
we randomly sample 650 segments (we simply left this number as
in the baseline) from the recording. Assuming that the event density
is low, not too many actual events should be included in the negative
prototype, however this assumption may of course be violated. As
such, this process deserves further thought.

Given the prototypes, we can extract event probabilities for the
query set. This is once again done via softmax based on negative
euclidean distance. Recall that we classify individual frames, but
the model actually receives 200 ms segments to process at once, and
consecutive segments have 50% overlap. Thus, many frames are
actually classified twice, and we have to be careful when stitching
segments together to get exactly one output for each frame of the
query set. We achieve this by only keeping the center 100 ms of
each segment and discarding the rest. Other methods are possible,
such as averaging results for those frames where we have multiple
outputs.

This entire process is repeated 10 times, sampling a separate
negative set each time, and the resulting probabilities are averaged
to reduce variance. Finally, we apply a Gaussian filter to the prob-
abilities to reduce their “jaggedness”. Here, we use 0.05 times the
average length of the support events (for the given recording only)
as the standard deviation.

Given the event probabilities, we choose a threshold in (0, 1)
and binarize the probabilities accordingly. Given this binary repre-
sentation, all changes 0 — 1 are regarded as a detected event start,
and all changes 1 — 0 as an event end. We convert frame numbers
back to seconds and store the results. Afterwards, we apply post-
processing similar to the baseline code, discarding all events that are
shorter than 60% of the shortest support event. This massively im-
proves the validation results — without postprocessing, our models
only achieve around 15% F1-score.

To choose a threshold, we simply try values in the range
[0.1,0.9] in increments of 0.01 and choose the one that results in the
best F1-score on the validation set as returned by the provided eval-
uation script (i.e. macro-averaged over recordings). This is usually
somewhere between 0.6 and 0.8 (our submissions all use thresholds
very close to 0.7).

Three of our four submissions are the exact same procedure
as described, repeated with different seeds. We do not select for
good seeds; we simply train three models and use their results. The
fourth model is an ensemble of the previous three, where we sim-
ply average their per-frame probabilities before thresholding. This
tends to result in slightly better precision, although we did not find
significant improvements over single models on the validation data
in terms of overall performance. There are of course other ways to
create ensembles; for example, one could first choose the optimal
threshold for each model and then summarize their post-threshold
decisions via majority vote.

Our models achieve approximately 60% macro-averaged F1-
score on the validation set. For results on the evaluation set, please
see the challenge website.

4. POSSIBLE IMPROVEMENTS

In this section, we would like to highlight parts of our procedure
that we believe warrant further work. We did try several things
ourselves, but usually found no effect or a decrease in performance.

Challenge

First off, the model is very small and trains for comparatively
few steps. This is if course not a bad thing per se, but given the trend
towards ever larger models, it would be surprising if there were no
more performance to be gained here by using much larger/deeper
models. However, given the fact that we already observed overfit-
ting in our models, this would probably need to be supported by
larger datasets and/or significant data augmentation.

Second and perhaps somewhat related, the embeddings are al-
most comically large. It may be that the shallow network is unable
to meaningfully compress the data into fewer dimensions. We be-
lieve that smaller embeddings are desirable since distance compu-
tations tend to be unreliable in high dimensions.

Regarding the topic of distance, we were puzzled by the fact
that squared euclidean distance performed so much worse than eu-
clidean distance. This was consistent over a wide selection of learn-
ing rates (we tested several orders of magnitude). It would be ex-
pected that the euclidean distance produces more problematic gradi-
ents due to the presence of the square root. Also, the ProtoNet paper
presents a theoretical justification for using the squared distance,
whereas we are not aware of any reason why euclidean distance
should be a “good” choice. We also tried using cosine distance,
but this lead to very bad results. Another option could be to use
a learned distance function, similar to RelationNet [10]. We also
tested this, but observed a drop in validation performance, presum-
ably due to overfitting (since training accuracy usually increased).

Furthermore, the inference procedure is quite simplistic and
could be improved. For example:

e A global threshold applied to all recordings is probably not
ideal. Given that we are dealing with very different species
of animals, different thresholds may be appropriate for each
recording. Even within a recording, the optimal threshold may
vary over time. We experimented with a leave-one-out pro-
cedure where we classified one support segment based on a
prototype computed from all other segments and used the re-
sulting (averaged) probabilities to scale the threshold for the
respective recording, but did not see an improvement.

e We found that our model has a tendency to return a positive
detection in case of just “any” event, e.g. noises that are simply
loud. This could mean that the prototypes are not discrimi-
native enough (again pointing to issues with the model). To
improve the negative prototype, we proceeded as follows: As-
suming the annotations are high-quality, we know that every-
thing before the fifth support annotation is negative, as long
as it does not fall in any of the previous support annotations.
During inference, we can compute the model probabilities for
these known-negative frames. Any frames that receive a high
positive probability can be added to the negative prototype;
this should presumably lead to a more negative output for this
frame in the future. We iterate this process, updating the neg-
ative prototype each time, until there are no known-negative
frames receiving a probability above a certain threshold. Un-
fortunately, we found that this does not terminate and there are
always known-negative frames that receive high positive prob-
ability. As such, we did not test how this procedure influences
performance. Still, we believe this idea (or something similar)
deserves further attention.

e We hypothesize that having a single prototype per class is
overly restrictive, particularly because we are dealing with sin-
gle frames. We tried to cluster the embeddings using k-means,
experimenting both with two and four clusters per class. Posi-
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tive and negative embeddings were clustered separately. Then,
we averaged the per-cluster embeddings to receive the respec-
tive prototype. Hypothetically, this should allow for better rep-
resentation of intra-class (or intra-event) variability. To return
to a binary output, we tried two alternatives: First, we sim-
ply sum the probabilities for all positive and all negative pro-
totypes, respectively. Or, second, we take the largest positive
probability as well as the largest negative one and renormalize
them to add to 1. Unfortunately, none of our experiments lead
to improvements. Note that we did not train new models for
this procedure — it may be better to zrain models with multiple
prototypes per class, closer to Matching Networks [[11]].

Finally, we did not have the opportunity to properly treat the
preprocessing part of the model. Mel spectrograms may not be op-
timal representations since they are tuned for human perception,
while we are dealing with animal calls. Also, the PCEN was not
tuned properly, with a single fixed time constant and learnable pa-
rameters that barely changed from their initial values. We experi-
mented with using multiple different (fixed) time constants and con-
catenating the resulting PCEN representations into a multi-channel
input, but this did not improve results. We would have liked to in-
vestigate different representations such as LEAF [12], but did not
manage to do so in time.

5. CONCLUSION

‘We have presented a segmentation-based approach to few-shot bioa-
coustic event detection. While we expected our model to perform
better, we believe it is superior to the “crude” approach that was
provided as a baseline, where whole segments of audio were as-
signed a single label. This is fundamentally limited in its temporal
resolution by the hop size between the segments. For example, at
the baseline hop of 50 milliseconds, events can only be recognized
at 100 milliseconds apart since there needs to be an “off™ classi-
fication in-between to separate both events. This could be “fixed”
by reducing the segment hop size, but this would in turn require
the model to make different decisions for almost-identical segments
(only shifted by a few ms or so), which is doomed to fail using
methods like CNNs.

On the contrary, our approach is limited only by the resolution
of the input features. This makes it more appropriate in scenarios
where precise annotations are important. Still, it needs further work
to reduce the noisiness of the outputs (essentially the opposite prob-
lem of the too-low resolution of the baseline) as well as improve the
per-frame prototypes.

All in all, we are unsure whether it is reasonable to expect a
single model to perform well both for short events such as bird calls
and long ones such as hyenas or other mammals, since these have
opposing requirements: Short, frequent events require precise local-
ization, whereas longer events need robustness to noise and fluctua-
tions. A better approach could be to design multiple systems for dif-
ferent time scales and use application-dependent prior knowledge to
select the most appropriate one. However, this is not really possible
for a challenge like this, where the data is unknown. Perhaps such
a choice could be made heuristically based on the lengths (or other
properties) of the support events. We are looking forward towards
the creative solution of the other participants.
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