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ABSTRACT

This report describes a model submitted to DCASE2021 Task 1 sub-
task A. Our model is developed by applying canonical polyadic
decomposition to the conventional convolutional-neural-network-
based models to reduce the model size to achieve the goal of Task
1A. More specifically, we apply the decomposition method to dual
ResNet, which divides the features into two parts along the fre-
quency axis and processes them independently, and shallow incep-
tion model. In order to evaluate our model, a simulation for acoustic
scene classification was performed with the development dataset of
DCASE 2021 Task 1A, and our model showed about log loss of
1.03-1.06 and macro accuracy of 62%-66% far better than that of
the baseline model. Also, the model size of our system is smaller
than 128 kbytes, which is the limit of the DCASE2021 Task 1A.

Index Terms— Acoustic scene classfication, Resnet, Shallow
inception, Mean-teacher, Decomposed convolution, Model com-
pression

1. INTRODUCTION

In order to provide services for various persons with machines, it
is requied to understand the environments and situations. Recently,
many machine learning algorithms have been developed to provide
personally optimized services with analysis of multiple sensor sig-
nals. The acoustic scene classification (ASC) task is one of the
problems to understand environment with sound signals, and some
competitions have been held to solve the ASC problem, such as
DCASE 2021 Task 1[1].

Undoubtedly, great progress has been made in research to in-
crease the accuracy of machine learning techniques. In order to
apply the algorithms to real machnies successfully, low memory
and computational power have to be considered. The DCASE 2021
Task 1A [2] focuses on this problem, and the main goal of the task
is that the model must have a minimal computational complexity
while maintaining sufficiently high performance.

In order to achieve the goals of the task, we focus on the model
structure optimization and compression. More specifically, we re-
duce the model size by using the decomposed convolution layers
instead of the conventional convolution layers, which is a major
part of the model parameters.

2. PROPOSED METHODS

2.1. Model compression

The previous studies[3, 4] have shown that Canonical Polyadic(CP)
decomposition can effectively compress convolutional layers.
Figure 1 shows how CP decomposition reconstructs a convolutional
layer. The CP-decomposed convolution layer consists of three

(a)

(b)

Figure 1: (a) Convolution layer (b) Decomposed convolution layer

CNN layers. The first CNN layer has bCin/Kc output channles
with (1× 1) kernels, where Cin and K are number of input
channels and compression factor, respectively, and bc means a
floor operator. The second layer has bCin/Kc input channels
and bCin/Kc output channels with the same kernel size as
the original convolution layer. The third layer has Cout output
channels with (1× 1) kernels, where Cout is the number of output
channels of the original convolution layer. The decomposed con-
volution layer can reduce (Cin × Cout ×Nkernel) parameters to[
Cin × bCin/Kc+ (bCin/Kc)2 ×Nkernel + bCin/Kc × Cout

]
parameters, where Nkernel is the kernel size.

To further reduce the size of the trained model, we quantized
the weights of the model to 16 bits.
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2.2. Model architectures

2.2.1. Dual ResNet model

The frequency-aware parallel structure was inspired by [5, 6]. The
Trident parallel structure in [6] divides the input into 3 parts along
the frequency axis and feeds each frame into ResNet. Each ResNet
learns the characteristics of each segmented frame. Our Dual model
consists of two paths of 0-128 and 128-256 mel bins. We have
checked through experiments that the two paths structure works
well enough. The residual block of our model consist of decom-
posed convolution layers with kernel size 3 × 3 and compression
factor 4. And to further compress the model, we used parame-
ter sharing in the CP decomposed convolutional layer. After every
convolution block, we added skip connection and last Max pooling
layer optional for each block as shown in Figure 2.

Figure 2: Residual block with parameter sharing and skip connec-
tion.

The ResNet structure composed of this residual block can be
seen in Figure 3. Here, we add a bottleneck structure to the last

Figure 3: ResNet blocks with filter size.

stage to control the number of model parameters. The output of
each ResNet is concatenated and output through a global max pool-
ing and softmax activation layer. The overall structure of model is

shown in Figure 4.

Figure 4: Overall structure of Dual ResNet model.

2.2.2. Shallow inception model

A previous study[6] demonstrated in DCASE 2020 task 1B that pro-
posed shallow inception model is effective for light models. We
modified this model to fit the model complexity constraints. The
overall model architecture of shallow inception is shown in Figure
5.

Figure 5: Overall structure of Shallow inception model

Since the model complexity depends on the filter size of the
convolution layer, we first reduced the filter size of each incep-
tion module without compromising performance. And the inception
module shares 1× 1 and 3× 3 convolution layers in each module.
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Figure 6: A block diagram of the mean-teacher model

2.2.3. Mean teacher model

In order to enhance the performance, ensembling a number of mod-
els may be a good strategy sometimes. Unfortunately, the ensem-
bling strategy cannot be applied to solve task 1A because it requires
a large number of parameters. Instead of applying model ensem-
bling directly, we comprise a mean-teacher model [7] to take ad-
vantage of the ensembling. The mean-teacher model consists of the
teacher and student models as shown in Figure 6. The parameters
of the teacher model are not trained during the training process, and
they are updated at the end of each iteration as

θteacher ← (1− α) θteacher + αθstudent (1)

where θteacher and θstudent are parameters of teacher and student
models, respectively, and α is an average coefficient for exponen-
tially tapered moving average. The loss function is set to weighted
sum of two losses as

Ctotal (θstudent) = Cclass (θstudent)+βCconsist (θstudent) (2)

where Cclass is a classification cost between the prediction results
of the student model and the ground truth and Cconsist is a consis-
tency cost between the prediction results of the student and teacher
models. In our system, the classification cost is set to the same as
the Dual ResNet without applying the mean-teacher model, and the
consistency cost is set to mean-squared error between two model
outputs.

3. EXPERIMENTAL SETTINGS

3.1. Data Preprocessing

The data of DCASE 2021 Task 1 subtask A[8] is 10 second long
48kHz sampled audio file. We loaded it at a 44.1 kHz sample rate
and passed it through a filter with a filter length of 2048 and a hop
size of 1024 and converted to a spectrogram. And each spectrum
was compressed through a Mel filter with a number of bins of 256,
and the log was taken to create a log Mel spectrogram. Lastly, deltas
and delta-deltas were calculated from log Mel spectrogram and con-
catenated to the channel axis.

3.2. Data Augmentation

A mixup[9] was used during each mini-batch to generalize the
model in training. We set the mixup parameter alpha to 2.0 for
Dual ResNet and 0.2 for shallow inception.

3.3. Training Setup

We used categorical cross-entropy as the loss function, and for the
optimizer, we used SGD with 0.9 momentum in the dual resnet and
focal loss[10] in the shallow inception. The learning rate lr was
modulated using a cosine annealing learning rate scheduler with
restart to avoid local minima and find a deeper optimal point. The
restart epochs was set to 2, 6, 14, 32, 60, 100, 130, 180, 210, 220,
250, 270, 290, 310 and 340. The initial lr was set to 0.5 in the dual
ResNet model and 0.01 in the shallow inception model. And lr was
reduced to 10−4. With each restart, restart lr decreased by 10 %.

4. RESULTS

To test each model architecture, training and test were performed
using the train/test split provided by the competition. Table 1 shows
a performance comparison for each cnn structure. DuRes-MT
means the Dual ResNet model trained by using the mean-teacher
structure.

Table 1: Results of development set
ID system name log loss accuracy model size
1 Dual ResNet 1.068 64% 125.7 KB
2 Shallow Inception 1.040 62% 125.1 KB
3 DuRes-MT (student) 1.047 67% 125.7 KB
4 DuRes-MT (teacher) 1.035 65% 125.7 KB

Baseline 1.473 47% -

The result shows that the developed systems have log loss per-
formance of 1.035 - 1.068 and accuracy performance of 62 % - 67%.
All systems have much better performance than the baseline. The
shallow inception model have better log loss but worse accuracy
performances than the dual ResNet model. The mean-teacher struc-
ture seems to enhance the performance of dual ResNet model. The
optimal performance of the teacher model was better than that of the
student model, but it was not consistent throughout our experiment.
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[2] I. Martı́n-Morató, T. Heittola, A. Mesaros, and T. Virta-
nen, “Low-complexity acoustic scene classification for multi-
device audio: analysis of dcase 2021 challenge systems,”
arXiv preprint arXiv:2105.13734, 2021.

[3] K. Koutini, F. Henkel, H. Eghbal-zadeh, and G. Widmer,
“Cp-jku submissions to dcase’20: Low-complexity cross-
device acoustic scene classification with rf-regularized cnns,”
DCASE2020 Challenge, Tech. Rep, Tech. Rep., 2020.

[4] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and
V. Lempitsky, “Speeding-up convolutional neural net-
works using fine-tuned cp-decomposition,” arXiv preprint
arXiv:1412.6553, 2014.



Detection and Classification of Acoustic Scenes and Events 2021 Challenge

[5] W. Gao and M. McDonnell, “Acoustic scene classification us-
ing deep residual networks with late fusion of separated high
and low frequency paths,” Tech. Rep., DCASE2019 Challenge,
2019.

[6] S. Suh, S. Park, Y. Jeong, and T. Lee, “Designing acoustic
scene classification models with cnn variants,” DCASE2020
Challenge, Tech. Rep, Tech. Rep., 2020.

[7] A. Tarvainen and H. Valpola, “Mean teachers are bet-
ter role models: Weight-averaged consistency targets im-
prove semi-supervised deep learning results,” arXiv preprint
arXiv:1703.01780, 2017.

[8] T. Heittola, A. Mesaros, and T. Virtanen, “Acoustic scene
classification in dcase 2020 challenge: generalization across
devices and low complexity solutions,” arXiv preprint
arXiv:2005.14623, 2020.

[9] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

[10] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal
loss for dense object detection,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2980–
2988.


