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ABSTRACT

This paper describes a solution with the ensemble of two un-
supervised anomalous sound detection (ASD) methods for the
DCASE2021 Challenge Task 2. The first ASD method is based on
a sequence-level autoencoder with section ID regression and a self-
attention architecture. We introduce the data augmentation tech-
niques such as SpecAugment to boost up the performance and com-
bine the simple scorer module for each section and each domain
to address the domain shift problem. The second ASD method is
based on a binary classification model using metric learning, which
utilizing task-irrelevant outliers as pseudo-anomalous data and con-
sidering the centroid of normal and outlier data in the feature space.
As a countermeasure against the domain shift problem, we perform
data augmentation using Mixup with data from the target domain,
resulting in a stable performance for each section. On the devel-
opment set, our method achieves a harmonic mean of 76.59% har-
monically averaged over of area under the curve (AUC) and partial
AUC (p = 0.1) of all machines, sections, and domains.

Index Terms— Anomalous sound detection, autoencoder, bi-
nary classification, metric learning

1. INTRODUCTION

In this paper, we describe our solution for DCASE2021 Chal-
lenge Task 2 [1] using two unsupervised ASD approaches. The first
approach is a sequence-level autoencoder using ID regression [2]
and a self-attention architecture [3, 4]. Unlike standard frame-
wise autoencoders, the proposed autoencoder receives the entire se-
quence of input features and reconstructs it at once by utilizing the
self-attention architecture. Furthermore, we explicitly utilize sec-
tion ID information as the inputs to avoid the confusion between
anomalous and normal sounds in different IDs.

The second approach is based on a binary classification model
using metric learning, which utilizes pseudo-anomalous data. This
approach assumes that carefully selected task-irrelevant outlier data
can be substituted as anomalous data [5], which makes it possible to
train the model under the classification problem that discriminates
between anomalous and normal even without the real anomalous
data. To further enhance this approach, we introduce a novel metric
learning method that considers the class centroids of the model’s
feature space [6].

The main difference from DCASE2020 Challenge Task2 [7] is
the existence of the domain shift. There are two types of domain:
source and target. The source domain data accounts for the major-
ity of the training data while the target domain data only exists in
tiny amounts. It is necessary to develop a model that can detect
anomalous sound in both domains with only the unbalanced train-
ing data. To tackle with this problem, we use different techniques
for each approach. In the autoencoder approach, we build the scorer
module with a Gaussian distribution for each section and each do-
main, which calculates the likelihood of reconstruction errors. This
allows us to absorb the difference in the reconstruction error range
caused by the domain shift. In the binary classification approach,
we perform the fine-tuning with data augmentation. We fine-tune
the model with the target domain data and pseudo-target domain
data generated by Mixup [8] to adapt it to the target domain for the
model trained only on the source domain.

Experimental evaluation with DCASE2021 Task 2 dataset [1]
demonstrates that 1) both of our approaches significantly outper-
form the baselines systems, 2) the autoencoder approach and binary
classification approach have different specialty, depending on the
target machine type, and 3) the ensemble of both approach achieves
the best performance, resulting in a harmonic mean of area under
the curve (AUC) and partial AUC (p = 0.1) of 81.62% in the source
domain and 69.47% in the target domain.

2. METHOD

2.1. Auto-encoder approach

The first approach is a sequence-level auto-encoder with ID regres-
sion based on our previous work [2]. The overview is shown in
Fig. 1. The input features are log Mel-spectrogram extracted from
audio and one-dimensional section ID determined from the file-
name. The auto-encoder model consists of Conformer blocks [4],
accepting the sequence of features, and calculating the reconstruc-
tion error. Instead of using the reconstruction error as the score, we
construct scorer modules using the reconstruction errors. We use
a Gaussian distribution with full covariance for the score calcula-
tion to model the distribution of the reconstruction errors using the
subset of training data, which is not used for the training of the auto-
encoder. Finally, we use the likelihood of the reconstruction errors
as a frame-wise anomaly score and then perform post-processing
to squeeze the time dimension. For more detail, see our previous
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Figure 1: Overview of the proposed autoencoder approach.

work [2].
To boost the auto-encoder approach’s performance, we intro-

duce SpecAugment (time masking and frequency masking) [9] and
dropout for the input feature sequence. Inspired by the interpola-
tion deep neural network (IDNN) [10], we apply SpecAugment and
dropout for the input feature sequence not only in training but also in
the inference. During the inference, we replicate the input sequence
and apply different masking for each of them. Then, we calculate
each reconstruction error and integrate them using a pooling oper-
ation (e.g., average or max). This method enables us to obtain the
gain like the model ensemble even with the single model.

In previous work [2], we have constructed a single scorer mod-
ule for each machine; however, to address the domain shift problem,
we build them for each section and each domain (e.g., source and
target). This approach is simple but effective, enabling us to absorb
the difference of the anomaly score range between the sections and
domains.

2.2. Binary classification approach

The second approach is a binary classification model using met-
ric learning. The overview is shown in Fig. 2. To train a binary
classification model, we use the normal data of the target section
of the machine as positive examples, and the other normal data in-
cluding the different machines as negative examples. A waveform
of each example is normalized over each machine type and then
converted to log Mel-spectrogram with 1024 FFT points, 256 shift
points, and 256 dimensional Mel basis. We use the PyTorch Image

Figure 2: Overview of the proposed binary classification approach.

Models [11] as a feature extraction module in the binary classifica-
tion model. The output features are then averaged in the time and
frequency directions to create an embedding vector that was ag-
gregated in the channel direction. We apply deep double-centroids
semi-supervised anomaly detection (DDCSAD) loss to this embed-
ding vector, which enables us to minimize the within-class variance
and maximize the between-class variance in the feature space [6].
The embedding vector is further trained to minimize a binary cross-
entropy loss by passing through dropout, ReLU, and full-connected
layer. We build the model for the source domain and then perform
fine-tuning for the target domain. When training the source domain,
only the data from the source domain is used. On the other hand,
when fine-tuning for the target domain, we make pseudo target do-
main data by Mixup with source and target domain data [8]. The
use of Mixup increases the variation of each class and created data
with an intermediate representation between positive and negative
examples, resulting in a more accurate classification model. For in-
ference, we combine the posterior probability with the normalized
distance between the embedding vector and the centroid of the nor-
mal class to calculate the anomaly score [6].

To make a variation for the model ensemble, we change the
pseudo-anomalous example selection, introduce additional data
augmentation such as Gaussian Noise and Volume control, change
the architecture of the feature extraction part, and use an additional
loss function, ArcFace [12]. For negative example selection, we
change to select samples within the same dataset (e.g., MIMII [13]
and ToyADMOS2 [14]), resulting in more stable performance
among the sections. ArcFace is a loss function to achieve a clear
geometric interpretation in the feature space, and the combination
of ArcFace with DDCSAD brings further improvements. Since the
binary classification approach build the model for each section, the
performance is less stable than autoencoder approach. Therefore,
we use multiple models including ResNet34 [15], ResNeXt50 [16],
and EfficientNet b3 [17]) in PyTorch Image Models to stabilize the
performance.

2.3. Model Ensemble

To further improve the performance, we conduct the model ensem-
ble. We select the N-best model on the developed data for each
machine and each domain and then integrate the outputs of these
models to obtain the final score. Before ensembling the scores for
each model, we normalize them to be mean zero and variance one.
Finally, we combine the normalized scores using the following four
methods: average, median, maximum, and ranking. We select the
best method for each machine and each section.

In the case of the autoencoder approach, we select the N -best
models and ensemble them for each machine and each domain. In
the case of the binary classification approach, we select the N -best
models of each section and then ensemble them for each machine
and each domain, i.e., we ensemble N×S models for each machine
and each domain, where S represents the number of sections in the
validation set. The number of N is optimized for each machine and
each domain.

3. EXPERIMENTAL EVALUATION

3.1. Experimental condition

We conducted an experimental evaluation using the DCASE2021
Challenge Task 2 dataset [13, 14]. The dataset consisted of the
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Table 1: Evaluation results. The values represent the harmonic mean of AUC [%] and pAUC (p = 0.1) [%] for each section of each domain.
The value in the column “all / harmean” represents the harmonic mean of AUC and pAUC over all machines, sections, and domains.

ToyCar ToyTrain fan gearbox pump silder valve all
Method source target source target source target source target source target source target source target harmean
Baseline (AE) 59.44 54.74 64.31 51.99 59.14 56.72 56.42 61.04 63.85 53.01 67.09 55.71 52.43 51.45 57.29
Baseline (MobileNetV2) 57.19 55.89 58.81 50.77 63.31 61.58 65.54 60.72 62.20 57.36 65.43 52.17 53.99 55.17 59.39
AE 80.41 63.05 80.50 61.28 71.82 65.97 62.69 70.01 72.61 62.41 86.01 62.01 80.60 64.30 69.05
BC 57.91 58.68 76.23 49.04 67.36 59.36 74.85 74.59 72.12 59.86 80.64 57.24 86.18 70.10 69.08
AE ensemble 83.29 68.70 81.06 62.83 74.37 69.75 64.14 72.32 74.60 65.68 86.12 65.41 82.94 67.81 71.67
BC ensemble 60.93 63.55 75.16 55.40 82.29 66.62 74.49 70.58 75.20 60.70 89.28 57.69 92.70 79.35 73.29
AE+BC ensemble (mix) 79.90 70.08 80.23 59.85 82.25 71.58 72.95 76.25 77.29 64.03 89.06 68.49 93.03 80.15 76.59
AE+BC ensemble (max) 83.29 68.70 81.06 62.83 82.29 69.75 74.49 72.32 75.20 65.68 89.28 65.41 92.70 79.35 75.68

normal/anomalous operating sounds of seven types of toy/real ma-
chines: ToyCar, ToyTrain, fan, gearbox, pump, slider, and valve.
Each machine included six sections, and each section was divided
into two domains, i.e., source and target. Each recording was
a single-channel, approximately 10-sec length audio sampled at
16 kHz. The number of training data was from around 1,000 sam-
ples in the source domain and only 3 samples in the target domain,
and that of development data was from around 200 samples in both
domains, which depending on the machine type. The training data
included only normal sounds, but the development data included
both normal and anomalous sounds to check the anomaly detection
performance. To verify the performance, we compared the follow-
ing models:

Baseline (AE): The autoencoder-based official baseline [1]. It was
trained on the normal training data by minimizing the recon-
struction error in the sense of mean squared error.

Baseline (MobileNetV2): The classification-based official base-
line [1]. It was trained under classification problem of sec-
tion ID to minimize the cross entropy.

AE: The proposed sequence-level autoencoder model. The model
was trained for 50,000 steps using Adam optimizer [18] with
Warmup scheduler [3]. The batch size was set to 64. The
number of warmup steps was 8,000. The hyperparameters
were optimized for each machine and each domain, includ-
ing Mel-spectrogram extraction condition (e.g., shift size and
Mel basis), model architecture (e.g., the number of blocks,
units, and kernel size), and post-processing. In SpecAug-
ment, the number of time masks was set to 50, and the width
range was from one to five. The number of frequency masks
was five, and the width range was from zero to ten. The
dropout rate for the input sequence was set to 0.2. During
the inference, we replicated the input sequence ten times and
then integrated them with average, max, or median pooling.

BC: The proposed binary classification-based method. The model
was ResNet34. The size of spectrogram was 256×256. The
model was trained for 8,000 steps using Adam optimizer,
the learning rate for fully-connected layer 1.0e-3, the learn-
ing rate for convolution layer 5.0e-4, OneCycleLR sched-
uler [19], and the batch size 64. The ratio of normal data
and outlier data was set to 1:1 in the mini-batch. When fine-
tuning the target domain, we trained the pre-trained model
created by the source domain for 800 steps. However, sam-
pling should be done at this time so that the mini-batch al-
ways contains 16 samples of target domain data or pseudo-
target domain data obtained by mixing up the target domain
and source domain.

AE ensemble: The ensemble of the proposed autoencoder mod-
els. The value of N was selected from {3, 5, 10, 20} and the
ensemble method were optimized for each machine and each
domain.

BC ensemble: The ensemble of the proposed binary-classification
models. The value of N was set to two and the ensemble
method was average.

AE+BE ensemble (mix): The ensemble of AE ensemble and BC
ensemble. We ensembled two ensembled scores with aver-
age; in other words, this can be seen as the weighted aver-
aged score of the autoencoder and binary classification ap-
proaches.

AE+BE ensemble (max): The ensemble of AE ensemble and BC
ensemble. We took the maximum value between AE ensem-
ble and BC ensemble for each machine and each domain.

The hyperparameters of each model and the post-processing param-
eters were optimized for each section and each domain. The eval-
uation metric was the harmonic mean of an area under the curve
(AUC) and a partial AUC (pAUC) (p = 0.1).

3.2. Experimental results

The experimental results are shown in Table 1. From the compari-
son among the different approach, the autoencoder-based approach
outperformed the binary classification approach in the machine type
ToyCar and ToyTrain, while the binary classification approach out-
performed the autoencoder-based approach in the machine type
gearbox and valve. The result showed that each approach focused
on different features. Furthermore, we were able to further improve
the performance by ensembling the models within the same method.
In particular, the binary classification approach has a problem of
creating a model for each machine for each section, which tends to
increase the variability of the score. However, by ensembling the
models, we were able to reduce the variability of the score, which
greatly contributed to the improvement of the overall score. Finally,
we ensembled the two approaches. The ensemble allowed us to ob-
tain a higher score by complementing both the excellent results of
the two approaches and outperform the baseline significantly.

4. CONCLUSION

This paper presented an ensemble approach combining sequence-
level autoencoder and binary classification model using metric
learning. Experimental evaluation showed that the proposed ap-
proach significantly outperformed baseline systems. By ensembling
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our completely different methods, we were able to obtain higher
scores. In particular, note that there are several machine types for
which the score of AE+BE ensemble (mix) is much better than that
of AE+BE ensemble (max). We believe that this is because each
method focused on different features to detect anomalous sounds.
These results suggest that it is important to ensemble models that
focus on different features. Future work includes integrating the en-
sembled models and develop a method to obtain the same or better
performance with fewer models.
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