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ABSTRACT

In the industrial field, it is very important to detect unknown anoma-
lies based on normal production data. Facing the actual production
situation, it is also of great significance to study the abnormal de-
tection of the machine under the condition of constantly changing
operating conditions. In dcase2021 task 2, we propose to use an un-
supervised abnormal sound detection method based on adversarial
domain adaptation. This method proposes a framework of adding
domain discriminator and one-class classifier on the basis of auto-
encoder extreme learning machine, and achieves good results on the
development dataset provided by the contest.

Index Terms— unsupervised, abnormal sound detection, ad-
versarial domain adaptation, domain shift, extreme learning ma-
chine

1. INTRODUCTION

For the health monitoring of complex industrial system, the tradi-
tional method based on fault classification limits the types of faults
that may exist in the machine. Because the machine is in normal
state most of the time, the faults are rare (the design performance
of complex industrial system is reliable, and the failure rate is low),
but the number of possible fault types is large, Therefore, it is im-
practical to collect a marked data set with enough of each possible
failure instance. In addition, in the actual production process, the
industrial system needs to constantly adjust the machine operating
conditions according to the environmental changes, production de-
mand and other conditions. These adjustments are often carried out
in a short time. In this case, we can not collect the data set repre-
senting all the operating conditions in a short time.

Domain adaptation can be used to transfer information between
sections or between different operating conditions in the same sec-
tion when there are no or not enough similar sections[1]. In fact, in
the data set provided by the task, the data in the target domain is se-
riously insufficient, and the data between the source domain and the
target domain cannot be matched one by one. Therefore, domain
migration under domain shift conditions will expand the operating
conditions on the target domain and expand the representativeness
of the dataset. Since the task is unsupervised, we must consider
the distribution of data in the source domain and target domain in
the input space. For task 2, based on the research of unsupervised
fault detection in hierarchical machine learning[2][3][4] combined
with deep adversarial learning, we use an unsupervised adversarial
domain adaptive anomaly detection method proposed by Michau
et al[5][6]. The task of anomaly detection is to detect abnormal

mechanical sound, and the task of domain adaptation is to align dif-
ferent source domains to target domains in the same section.

2. HIERARCHICAL EXTREME LEARNING MACHINE
FOR UNSUPERVISED ANOMALY DETECTION

Extreme Learning Machine(ELM) is a kind of feed-forward neural
network. Its feature is to randomly extract the weights and devia-
tions between the input layer and the hidden layer, and only learn
the weights between the hidden layer and the output layer[7].

Hierarchical Extreme Learning Machine (HELM) is con-
structed by stacking networks. This stacking method includes ex-
tracting the hidden layer for each elm and using it as the input of
the next elm. Since back propagation can not be used, information
can only flow forward. This method requires sequential training for
each elm. The underlying network is usually trained in an unsuper-
vised way, such as automatic encoder, while only the last network
is trained for anomaly detection. In fact, in helm, the auto-encoder
is a feature learner. In addition, in the case that only health data can
be used for training, it is impossible to quantify the features in the
training process, and it is impossible to transfer the recognition abil-
ity about the wrong features. Therefore, it is impossible to realize
the loss back propagation of one-class classification to the feature
learner. For the above situation, the architecture based on elm has
good applicability.

2.1. ELM model

Elm is essentially a single layer feed-forward neural network. The
connection weights of the input layer and the hidden layer, and the
threshold of the hidden layer can be set randomly and need not be
adjusted after setting. Instead of iterative adjustment, the connec-
tion weight between hidden layer and output layer, is determined
by solving the equations at one time. The most important feature
of elm is that for the traditional neural networks, especially the sin-
gle hidden layer feed-forward neural networks (SLFNs), it is faster
than the traditional learning algorithm on the premise of ensuring
the learning accuracy.

The single layer feed-forward network is defined as follows:

Y = F (M,X,N) · γ (1)

X is the input, Y is the output, F is the activation function, M and
N correspond to the weight and deviation between the input layer
and the hidden layer respectively, γ Is the weight that connects the
hidden layer to the output layer. The training of elm model includes
three steps. First, the values of M and N are given randomly, and
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Figure 1: HELM architecture. The HELM consists of an arbitrary
number of stacked unsupervised auto-encoder ELM and a one-class
classifier ELM.

then the Eq.(1) Y is solved to make it as close as possible to a
desired target T . Finally, given an architecture, M , N and a target
T , Training elm model includes first drawing M , N randomly, the
value of γ can be calculated to satisfy the optimal ELM.

2.2. HELM model

The helm architecture is shown in Fig. 1. A single compressed elm
auto-encoder is used as a feature learner, and then the feature is used
as the input of one-class classifier for anomaly detection.

3. UNSUPERVISED ADVERSARIAL DOMAIN ADAPTIVE
ABNORMAL SOUND DETECTION

3.1. Network structure

In this paper, we plan to use the ELM architecture. The structure
consists of three parts, as shown in Fig. 2. It consists of a fea-
ture coder N3, a confrontational feature domain discriminator N3

connected to a networkN3 with a gradient inversion layer, and one-
class classifier N3 performing an anomaly detection task. The em-
phasis of this method is the feature alignment strategy and its influ-
ence on the performance of anomaly detector.

Since the anomaly detection in task is unsupervised, its pur-
pose is to detect the abnormal instances that are not available in the
source domain and target domain during training[8]. Therefore, our
goal is to collect domain independent features as much as possible,
so as to monitor the health of the target data, including the operation
mode not obtained during the training[9].

In order to align features without labels, the method used tries
to ensure that the features are meaningful relative to the informa-
tion originally contained in the data. Therefore, in our method, we
want to minimize the multi-dimensional scale loss affected by the
dimension reduction tools in the auto-encoder. Here, the feature
extractor N1 can be trained in a confrontational manner, first, to
minimize the proposed multi-dimensional scale loss, and second,
to maximize the domain discriminator loss. After training, the ex-
tracted features will be used for one-class classification in N3.The
threshold of one-class classification is calculated in the same way as

Figure 2: Unsupervised Adversarial Domain Adaptive Abnor-
mal Sound Detection(UADA-ASD). The feature extractor N1 is
trained to minimise the multidimensional scaling loss LF and to
maximise the domain discriminator loss LD . The domain discrimi-
natorN2 is a traditional feed-forward dense classifier. Once trained,
features are fed to the one-class classifierN3 for anomaly detection.

the baseline system. The anomaly detection threshold is determined
as the 90-th percentile of the gamma distribution.

3.2. Multidimensional scale loss

The feature space comes from the feature encoder N1, which is ac-
tually a coding part of the auto-encoder, transforming the input non-
linearity into a new feature space with different dimensions. In or-
der to ensure that the feature space contains data distribution infor-
mation similar to the input space, this paper redefines the loss cal-
culation method which can better maintain the sample relationship
between the source domain dataset and the target domain dataset.

The input data is expressed as X , and the feature of neural net-
work learning is expressed as F . we propose to define multidimen-
sional scaling loss as:

LF =
∑

D∈

 Src
Tgt



1

|D|
∑

(i,j)∈D

||||Xi−Xj ‖2 − η̂D‖Fi−Fj ‖2‖2

(2)
Where

∀D ∈
{
Src
Tgt

}
, η̂D = Argminη̃D LF (η̃D) (3)

For every pair of samples i and j, the LF compares their Euclidean
distance in the input spaceX with their distance in the feature space
F , given a global scaling factor η̃D . The loss is minimised when,
given the scaling factors, the distances in the feature space between
every pair of samples are the same as in the input space. The scaling
factors η̃D are computed independently for each dataset to allow
for independent scaling and to mitigate different distribution shifts
such as translations, noise, rotations, and scales. Since these shifts
are not known a priori, the variables η̃D must either be learned or
chosen arbitrarily. In Eq. (2), we propose to learn their value as the
value that minimises the loss, since a closed-form solution exists.
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From an optimisation perspective, the minimisation of the loss
(1) is equivalent to that where ηSrc = 1 and ηTgt = η̂Src/η̂Tgt,
such that we can define the loss as:

LF =
∑

D∈

 Src
Tgt



1

|D|
∑

(i,j)∈D

| ‖Xi −Xj‖2−ηD ‖Fi − Fj‖2 ‖2

(4)
Where

ηSrc = 1, ηTgt = Argmin
η̃T g t

LF (η̃Tgt) (5)

4. EXPERIMENTAL RESULTS

In this part, we do experiments on the development dataset[10][11]
in task 2. The training set is divided into source domain training
set and target domain training set. The data processing method is
consistent with that of task 2 auto-encoder baseline system[12].

4.1. Parameter setting

In our method, the feature extractor N1 is designed as a two-layer
feed-forward dense network with 640 neurons. The domain dis-
criminator is a dense network with two five neuron layers. The gra-
dient inversion layer super parameter weights the back-propagation
domain discrimination loss gradient to the feature extractor param-
eter, which is set to 0.1.

The corresponding AUC and pAUC are calculated respectively,
and then the values are compared with the baseline system based on
the auto-encoder.

4.2. Experiments Summary

It can be known from table 1 and table 2 that compared with the AE
method used in the baseline system, the AUC and pAUC obtained
by our method are improved in different machine types. On the
value dataset, the performance is improved obviously, the average
AUC is increased by 15.31%, and the average pAUC is increased
by 5.32%. Meanwhile, we should also aware that our method is not
effective on the ToyTrain and Slider datasets, and the generalization
ability of the model still needs to be improved.

5. CONCLUSION

For task 2, we propose the UADA-ASD method. According to the
AUC results of the development dataset, our method is basically
better than the baseline system, except for the ToyTrain and Slider
datasets. In the future work, we hope to further improve the general-
ization ability of the model, enhance the feature alignment strategy
in adversarial domain adaptation, and use the idea of generating ad-
versarial network to enhance the sample and feature of the target
domain data.

Table 1: AUC of UADA-ASD and AE method
UADA-ASD Baseline(AE)

section domain AUC AUC
ToyCar 0 source 65.98% 67.63%

1 source 75.32% 61.97%
2 source 42.89% 74.36%
0 target 65.77% 54.50%
1 target 72.10% 64.12%
2 target 62.71% 56.57%

arithmetic mean 64.13% 63.19%
harmonic mean 62.00% 62.49%

ToyTrain 0 source 88.19% 72.67%
1 source 74.47% 72.65%
2 source 71.54% 69.91%
0 target 38.17% 56.07%
1 target 61.25% 51.13%
2 target 52.91% 55.57%

arithmetic mean 64.42% 63.00%
harmonic mean 59.90% 61.71%

dgearbox 0 source 84.95% 56.03%
1 source 54.81% 72.77%
2 source 79.70% 58.96%
0 target 70.18% 74.29%
1 target 47.93% 72.12%
2 target 71.97% 66.41%

arithmetic mean 68.25% 66.76%
harmonic mean 65.52% 65.97%

fan 0 source 72.15% 66.69%
1 source 82.37% 67.43%
2 source 70.42% 64.21%
0 target 53.27% 69.70%
1 target 77.04% 49.99%
2 target 61.85% 66.19%

arithmetic mean 69.52% 64.03%
harmonic mean 68.73% 63.24%

pump 0 source 69.72% 67.48%
1 source 89.36% 82.38%
2 source 61.37% 63.93%
0 target 61.96% 58.01%
1 target 65.58% 47.35%
2 target 50.04% 62.78%

arithmetic mean 66.34% 63.66%
harmonic mean 64.38% 61.92%

slider 0 source 69.73% 74.09%
1 source 83.70% 82.16%
2 source 81.17% 78.34%
0 target 57.50% 67.22%
1 target 38.08% 66.94%
2 target 50.64% 46.20%

arithmetic mean 63.47% 69.16%
harmonic mean 58.82% 66.74%

value 0 source 70.92% 50.34%
1 source 56.86% 53.52%
2 source 72.71% 59.91%
0 target 78.57% 47.12%
1 target 75.07% 56.39%
2 target 60.18% 55.16%

arithmetic mean 69.05% 53.74%
harmonic mean 68.10% 53.41%
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Table 2: pAUC of UADA-ASD and AE method
UADA-ASD Baseline(AE)

section domain pAUC pAUC
ToyCar 0 source 65.11% 51.87%

1 source 66.84% 51.82%
2 source 47.58% 55.56%
0 target 54.16% 50.52%
1 target 65.16% 52.14%
2 target 53.63% 52.61%

arithmetic mean 57.75% 52.42%
harmonic mean 57.81% 52.36%

ToyTrain 0 source 66.16% 69.38%
1 source 56.32% 62.52%
2 source 47.84% 47.48%
0 target 49.79% 50.62%
1 target 49.84% 48.60%
2 target 51.79% 50.79%

arithmetic mean 53.62% 54.90%
harmonic mean 52.99% 53.81%

dgearbox 0 source 70.10% 51.59%
1 source 54.14% 52.30%
2 source 69.70% 51.82%
0 target 63.74% 55.67%
1 target 53.43% 51.78%
2 target 64.08% 53.66%

arithmetic mean 62.53% 52.80%
harmonic mean 61.80% 52.76%

fan 0 source 51.26% 57.08%
1 source 79.79% 50.72%
2 source 76.58% 53.12%
0 target 56.05% 55.13%
1 target 64.37% 48.49%
2 target 73.00% 56.93%

arithmetic mean 66.84% 53.58%
harmonic mean 65.09% 53.38%

pump 0 source 61.05% 61.83%
1 source 64.16% 58.29%
2 source 53.79% 55.44%
0 target 51.79% 51.53%
1 target 54.47% 49.65%
2 target 50.74% 51.67%

arithmetic mean 56.00% 54.74%
harmonic mean 55.59% 54.41%

slider 0 source 53.84% 52.45%
1 source 59.11% 60.29%
2 source 74.20% 65.16%
0 target 54.53% 57.32%
1 target 48.86% 53.08%
2 target 54.41% 50.10%

arithmetic mean 57.49% 56.40%
harmonic mean 56.52% 55.94%

value 0 source 51.00% 50.82%
1 source 52.16% 49.33%
2 source 65.74% 51.96%
0 target 57.95% 48.68%
1 target 59.05% 53.88%
2 target 49.68% 48.97%

arithmetic mean 55.93% 50.61%
harmonic mean 55.40% 50.54%
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tems: Bi-level deep learning approach for fault detection,” in
Proceedings of the European Conference of the PHM Society
2018, 2018.

[5] G. Michau and O. Fink, “Unsupervised transfer learning for
anomaly detection: Application to complementary operating
condition transfer,” Knowledge-Based Systems, vol. 216, p.
106816, 2021.

[6] G. Michau and O. Fink, “Unsupervised fault detection in vary-
ing operating conditions,” in 2019 IEEE International Con-
ference on Prognostics and Health Management (ICPHM).
IEEE, 2019, pp. 1–10.

[7] G.-B. Huang, L. Chen, C. K. Siew, et al., “Universal approx-
imation using incremental constructive feedforward networks
with random hidden nodes,” IEEE Trans. Neural Networks,
vol. 17, no. 4, pp. 879–892, 2006.

[8] R. Zhang, H. Tao, L. Wu, and Y. Guan, “Transfer learning
with neural networks for bearing fault diagnosis in changing
working conditions,” IEEE Access, vol. 5, pp. 14 347–14 357,
2017.

[9] X. Li, W. Zhang, and Q. Ding, “Cross-domain fault diagnosis
of rolling element bearings using deep generative neural net-
works,” IEEE Transactions on Industrial Electronics, vol. 66,
no. 7, pp. 5525–5534, 2018.

[10] R. Tanabe, H. Purohit, K. Dohi, T. Endo, Y. Nikaido, T. Naka-
mura, and Y. Kawaguchi, “MIMII DUE: Sound dataset for
malfunctioning industrial machine investigation and inspec-
tion with domain shifts due to changes in operational and en-
vironmental conditions,” In arXiv e-prints: 2006.05822, 1–4,
2021.

[11] N. Harada, D. Niizumi, D. Takeuchi, Y. Ohishi, M. Ya-
suda, and S. Saito, “ToyADMOS2: Another dataset of
miniature-machine operating sounds for anomalous sound
detection under domain shift conditions,” arXiv preprint
arXiv:2106.02369, 2021.

[12] Y. Kawaguchi, K. Imoto, Y. Koizumi, N. Harada, D. Niizumi,
K. Dohi, R. Tanabe, H. Purohit, and T. Endo, “Description
and discussion on DCASE 2021 challenge task 2: Unsuper-
vised anomalous sound detection for machine condition mon-
itoring under domain shifted conditions,” In arXiv e-prints:
2106.04492, 1–5, 2021.


