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ABSTRACT

Acoustic scene classification (ASC) categorizes an audio file based
on the environment in which it has been recorded. This has long
been studied in the detection and classification of acoustic scenes
and events (DCASE). We present the solution to Task 1 A (Low-
Complexity Acoustic Scene Classification with Multiple Devices)
of the DCASE 2021 challenge submitted by the Chung-Ang Univer-
sity team. We proposed Trident-EfficientNet with 3 scaling factors:
width, depth, resolution. Additionally, we used lightweight deep
learning techniques such as pruning and quantization.

Index Terms— acoustic scene classification, efficientnet, prun-
ing, quantization

1. INTRODUCTION

The goal of Task 1 in DCASE 2021 is to classify a test record-
ing into one of the provided predefined classes that characterize
the acoustic scenes in which it was recorded [1]. We submitted
the results for subtask A of Task 1. The subtask A addressed two
challenges that ASC faces in real-world applications. Both are con-
cerned with the basic problem of acoustic scene classification. One
is that the audio recorded using different recording devices should
be classified in general, and the other is that the model used should
have low-complexity. Subtask A’s audio data are recorded and sim-
ulated with a variety of devices. The development dataset comprises
40 hours of data from device A, and smaller amounts from the other
devices. Audio is provided in single-channel (mono) 44.1kHz 24-bit
format.

2. ARCHITECTURE

2.1. System Overview

Figure 1 describe our system overview. We extract log-mel spec-
trogram, delta, and delta-delta features from the raw audio. Com-
bined feature of log-mel spectrogram, delta, and delta-delta fed
into our model. In model training, we trained our proposed model
with mixup and crop augmentation. We further applied pruning and
quantization for the composition of even lighter models.
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2.2. Audio Preprocessing

In the past DCASE challenges, most of the top team approached to
forming image like spectrograms as inputs for Convolutional Neural
Networks (CNN). For feature extraction, our approach was inspired
by McDonnell’s past work on DCASE 2019 competition [2], that
utilize log-mel energies, deltas, and delta-deltas from the log-mel
energies. The deltas and delta-deltas imply the first and second tem-
poral derivatives of the spectrum. The audios in the subtask A are
mono and have a common sampling rate of 44.1kHz. To generate
each spectrogram, we used 2048 FFT points, a hop-length of 1024
samples, 300 frequency bins and HTK formula. The stacked feature
of log-mel spectrogram, deltas, and delta-deltas fed into our deep
learning models.

2.3. Data Augmentation

Mixup is an effective data augmentation method [3]. We used a
general augmentation approach: we mixed different samples of the
training set according to their weights. The method is as follows:

X = λXi + (1− λ)Xj , (1)

y = λyi + (1− λ)yj , (2)

where λ ∈ [0, 1] and is acquired by the sampling of the beta dis-
tribution with parameter α, β(α, α), α ∈ (0,∞). Xi and Xj are
different data samples ; yi and yj are their corresponding labels.
In our experiment, we used the mixup to augment the log-mel-
spectrograms. We set α at 0.4 and used crop augmentation as 300
on the temporal axis before the mixup augmentation [2].

2.4. Trident EfficientNet

CNN have the transition invariant property meaning that we can
detect an objective no matter where it located. A cat on top left,
and a cat on bottom right are same as a cat category of images.
However in spectrogram, invariant property in frequency domain is
not quite necessary. Low frequency regions and high frequency re-
gions would have its own meaning in audio domain. Thus, we took
the trident architecture proposed by Suh et al. (2020) [4], dividing
frequency ranges in three parts in their modeling architecture. The
Figure 2 (a) describes the whole modeling architecture. The input
feature passed to the 3 × 3 convolution layer with 32 filters. The
frequency domain of the output is equally divided into three parts.
The original (150, 212,3) dimension is divided into three (50,212,3)
dimensions. Each (50,212,3) dimension path, we connected three
Efficient Blocks. The Efficient Block is described in Figure 2 (c),
and the MB-SE block is described in Figure 2 (b). The Efficient
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Figure 1: System Overview

Figure 2: Model architecture. (a) describe whole model architecture. (b) describe MB-SE Block used in the model. (c) describe Efficient
Block used in the model (a). If the repeats parameter is 1, (i) is used as Efficient block. If the repeats parameter is 2, (ii) is used as Efficient
block. The repeats parameter is described in Table 1, 2, and 3. f in represent filters in and f out represent filters out.

block is inspired by Efficientnet [5] modifying the architecture of
Efficientnet-B0 model. We revised Efficient Block in the order of
batch normalization layer, activation layer and convolution layer.
Also, the kernel size of the convolution kernel used in the out-
put phase of the MB-SE block was modified from (1,1) to (1,2).
The MB-SE block consists of expansion phase, depthwise convolu-

tion, squeeze-and-excitation (SE), and output phase. The SE layer
is added in the inverted bottleneck layers as Xiong et al (2019) [6]
suggested in their ANTNets. In the expansion phase (in the inverted
bottleneck), The number of output channels increased by the input
channel (filter in) multiplied by the expand ratio. Next, the depth-
wise separable convolution is applied with a SE layer. In the output
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Table 1: Efficient Block parameters for TEFF 1 model
Block repeats filters in filters out expand ratio strides se ratio

1 1 32 16 1 1 0.25
2 2 16 24 3 2 0.25
3 2 24 32 2 1 0.25

Table 2: Efficient Block parameters for TEFF 2 model
Block repeats filters in filters out expand ratio strides se ratio

1 1 32 16 1 1 0.25
2 2 16 24 3 2 0.25
3 2 24 40 3 1 0.25

phase, the convolution with the 1× 2 kernel is applied.
We experimented with four different systems by modifying Ef-

ficient Block parameters. The Table 1 describe Efficient Block pa-
rameters for TEFF 1 model. The Table 2 and the Table 3 describe
Efficient Block parameters for TEFF 2 and TEFF 3 model. The Fig-
ure 2 (c) (i) describe the Efficient Block when the repeats parameter
is 1, and The Figure 2 (c) (ii) describe the Efficient Block when the
repeats parameter is 2,

3. EXPERIMENTS

3.1. Datasets

The development dataset of TAU Urban Acoustic Scene 2020 Mo-
bile [7] were collected by the Tampere University of Technology
(TAU) between May and November 2018. The dataset contains
recordings obtained from 10 European cities using 9 different de-
vices: 3 real devices (A, B, and C) and 6 simulated devices (S1–S6).
A recording from device A is processed through convolution with
the selected impulse response, then processed with a selected set of
parameters for dynamic range compression (device-specific). The
development dataset consists of total 23,000 samples, the dataset is
provided with a training and test datasets in which 70% of the data
for each device is included for training and 30% for testing. Some
simulated devices (S4–S6) appear only in the test subset. As a re-
sult, we have 13,962 training samples and 2,970 testing samples.

We divided the original training data by 7 to 3 for the new train-
ing and validation set. Our model was trained using the new training
set and validation accuracy is measured on the validation set. The
final scores are calculated using all the original training dataset.

3.2. Experiment Setting

Each model trained using 70 epochs with Stochastic Gradient De-
scent (SGD) optimizer with momentum of 0.9. The stochastic gra-
dient descent with warm restarts is used [8]. Learning rate was ini-
tially set to 10−2 and decreased to 10−5. We used cosine decay
warm restart, and it is initialized at epoch number 10 and 30.

Table 3: Efficient Block parameters for TEFF 3 model
Block repeats filters in filters out expand ratio strides se ratio

1 1 32 16 1 1 0.25
2 2 16 24 2 2 0.25
3 1 24 40 2 1 0.25

Table 4: Model size calculation. The Parameters column represent
the number of parameters and the NZ parameters column represent
the number of non-zero (NZ) parameters. The model size described
inside of the parenthesis.

System Name Parameters NZ parameters

TEFF1-C45-Q 32bit 7,628 (29.8KB) 7,628 (29.8KB)
16bit 82,282 (160.7KB) 48,871 (95.45KB)
Total 89,910 (190.5KB) 56,499 (125.2KB)

TEFF1-P45-Q 32bit 7,628 (29.8KB) 7,628 (29.8KB)
16bit 82,282 (160.7KB) 48,871 (95.45KB)
Total 89,910 (190.5KB) 56,499 (125.2KB)

TEFF2-C70-Q 32bit 9,676 (37.8KB) 9,676 (37.8KB)
16bit 125,072 (244.3KB) 44,828 (87.55KB)
Total 134,748 (282.1KB) 54,504 (125.4KB)

TEFF3-Q 32bit 4,780 (18.67KB) 4,780 (18.67KB)
16bit 51,266 (100.1KB) 51,266 (100.1KB)
Total 56,046 (118.8KB) 56,046 (118.8KB)

3.3. Light-weight Techniques

We applied two types of pruning schedulers. One is constant spar-
sity that only uses target sparsity, the other is the polynomial decay
which increases the sparsity from 0 to target sparsity amount. We
applied pruning for the first 30 epochs and we fine tuned the initial
learning rate with the second phase of 30 epochs of training. [9]

We proposed four different systems. Table 5 shows the name of
our submitted systems and configurations for pruning and quantiza-
tion. ‘TEFF1-C45-Q’ and ‘TEFF1-C45-Q’ used the same TEFF 1
model. The ‘TEFF1-C45-Q’ model have constant sparsity level of
45%, and the ‘TEFF1-P45-Q’ model have polynomial decay spar-
sity that the sparsity level increases from 0 to 45%. For the ‘TEFF2-
C70-Q’ model, we experimented more complex model with in-
creased level of sparsity. Lastly, ’TEFF3-Q’ model, we used light
model without pruning. The original four model parameters were
expressed in 32 bit format. We used 16 bit quantization except for
batch normalization layers. The detailed model size calculation is
shown in the Table 4.

3.4. Model Configurations

The naming convention for our proposed model described below:

• TEFF: ‘TEFF’ indicate that we used Trident-EfficientNet
model. We used different hyper parameters for our proposed
models.

• C: ‘C’ indicate that we used constant sparsity for pruning
scheduler. The number after ‘C’ letter indicate the sparsity
level.

• P: ‘P’ indicate that we used polynomial decay for pruning
scheduler. The number after ‘P’ letter indicate the target spar-
sity level.

• Q: ‘Q’ indicate that we used 16bit Quantization.

4. RESULTS

In this section, we report the performance of our proposed models
on the validation set separated from the original training dataset.
The separated validation set is not used in the model training. In
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Table 5: Light-weight techniques for Submitted Systems
System Name Model Pruning Quantization

1 TEFF1-C45-Q TEFF 1 constant, 45 % float16
2 TEFF1-P45-Q TEFF 1 poly decay, 45 % float16
3 TEFF2-C70-Q TEFF 2 constant, 70 % float16
4 TEFF3-Q TEFF 3 - float16

Table 6: Performances on validation dataset
Model System Name Accuracy Size

1 TEFF1-C45-Q 65.5 % 125.1KB
2 TEFF1-P45-Q 65.7 % 125.1KB
3 TEFF2-C70-Q 65.2 % 125.4KB
4 TEFF3-Q 63.1 % 118.8KB

all results,it exceeds the accuracy of the Baseline system, and all
models have a model size of less than 128 KB.

4.1. Our submission

We submitted 1st, 2nd and 3rd model in Table 6 for subtask A.The
Table 7 describe detailed information for our submissions. All sub-
missions are trained using all development dataset.

5. CONCLUSION

We propose the Trident-EfficientNet architecture that maintains the
frequency related information with its trident shaped architecture.
Also, Efficient block design is applied for light models. Further,
we applied pruning and quantization. We experimented with three
different Trident-EfficientNet models with different pruning param-
eters. Our proposed models have accuracy ranges from 63.1% to
65.7% on the separated validation dataset.

6. REFERENCES

[1] http://dcase.community/challenge2021/.

[2] W. Gao and M. McDonnell, “Acoustic scene classification us-
ing deep residual networks with late fusion of separated high
and low frequency paths,” DCASE2019 Challenge, Tech. Rep.,
June 2019.

[3] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

Table 7: Description for Subtask A submissions. Model is described
in Table 6.

Submission ID Model Training

Lim CAU task1a 1 1 all
Lim CAU task1a 2 2 all
Lim CAU task1a 3 3 all
Lim CAU task1a 4 4 all

[4] S. Suh, S. Park, Y. Jeong, and T. Lee, “Designing acoustic scene
classification models with CNN variants,” DCASE2020 Chal-
lenge, Tech. Rep., June 2020.

[5] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in International Conference on
Machine Learning. PMLR, 2019, pp. 6105–6114.

[6] Y. Xiong, H. J. Kim, and V. Hedau, “Antnets: Mobile convo-
lutional neural networks for resource efficient image classifica-
tion,” arXiv preprint arXiv:1904.03775, 2019.

[7] T. Heittola, A. Mesaros, and T. Virtanen, “TAU Urban Acoustic
Scenes 2020 Mobile, Development dataset,” Feb. 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.3670167

[8] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent
with warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[9] A. Renda, J. Frankle, and M. Carbin, “Comparing rewind-
ing and fine-tuning in neural network pruning,” arXiv preprint
arXiv:2003.02389, 2020.


