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ABSTRACT
This technical report describes the submission from our team for
Task 2 of the DCASE2021 challenge Unsupervised Anomalous
Sound Detection for Machine Condition Monitoring under Domain
Shifted Conditions. In this work, we adopt a GANomaly semi-
supervised anomaly detection method via adversarial training to
perform anomalous sound detection. By using the conditional gen-
eration of the confrontation network, the generator network effec-
tively fits the data distribution of the normal samples during train-
ing, and calculates the reconstruction error of the anomaly score of
the test samples.

Index Terms— Anomalous Sound Detection, Unsupervised,
Fault Detection

1. INTRODUCTION

This task is the follow-up of DCASE 2020 Task 2, and the IEEE Au-
dio and Acoustic Signal Processing Association’s 2021 ”Detection
and Classification of Acoustic Scenes and Events (DCASE) Chal-
lenge” (DCASE) still regards the detection of abnormal sounds in
machines as one of the tasks. The purpose of the task is detecting
unknown anomalous sounds under the condition that only normal
sound clips have been provided as training data, the same as in 2020.
This task[1] is also performed under the conditions that the acoustic
characteristics of the training data and the test data are different.

The two datasets (MIMII DUE[2] and ToyADMOS2[3]) con-
sist of the normal/anomalous operating sounds of seven types of
real/toy machines. Each recording is a single-channel 10 s long au-
dio that includes both machine’s operating sound and environmental
noise. The source domain means the condition under which most of
the training data was recorded, whereas the target domain means a
different condition under which some of the test data was recorded.
The source and target domains differ in terms of operating speed,
machine load, viscosity, heating temperature, environmental noise,
signal-to-noise ratio (SNR), etc.

To solve this task, we adopt a GANomaly[4] semi-supervised
anomaly detection method via adversarial training. By using the
conditional generation of the confrontation network[5], the network
can effectively learn the data distribution of normal samples dur-
ing training. Employing encoder-decoder-encoder sub-networks in
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Figure 1: The structure of Ganomaly network

the generator network enables the model to map the input data to a
lower dimension vector, which is then used to reconstruct the gener-
ated output data. The reconstruction error is served as the anomaly
score of the samples for anomaly detection.

2. PROPOSED APPROACH

2.1. Data preprocessing

Following the baseline model, each input 10 s file is split into frames
of length 64 ms, with a hop length of 32 ms between frames. 1024-
FFT and 128 Mel bins are used to featurize each frame. In train-
ing, 10 frames are concatenated, resulting in 10 × 64 = 640 dimen-
sional input, which are the log-Mel spectrograms computed using
the above parameters.

2.2. frequency-based attention

As we know, different sound events have different spectral charac-
teristics, and we should treat these frequency components differ-
ently according to the characteristics of each frame to better iden-
tify sound events. For some categories in the data set, the differ-
ence between normal sounds and abnormal sounds is particularly
obvious in frequency components such as ToyCar. We adopt the
method of frequency-based attention mechanism, which is similar
to the method proposed by He et al.[6]. The input feature will go
through a fully-connected layer with 64 hidden units, followed by
an sigmoid. We then normalize the weights obtained along the fre-
quency axis function. Finally, the frequency attention weight and
the input feature are multiplied element-wise. The weighted feature
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Table 1: DCASE 2021 Task 2 Results over Dev Data.
toycar toytrain fan gearbox pump slider valve

Baseline 63.19(52.42) 63.0(54.9) 64.03(53.58) 66.76(52.8) 63.66(54.74) 69.16(56.4) 53.74(50.61)
Proposed 64.5(55.5) 62.1(54.8) 61.4(53.2) 67.1(53.7) 62.6(55.5) 66.6(54.9) 51.3(50.2)

is computed as follows

Ŵn,t = sigmoid(VnX + bn), (1)

Wn,t = Nf
Ŵn,t∑
n Ŵn,t

, (2)

X̄ = Wn,t ⊗ X, (3)

where X is the input acoustic feature, Vn and bn represent the
weights and bias for the n-th hidden unit respectively, Ŵn,t is the
frequency attention weight without normalization, Wn,t is the nor-
malized result, ⊗ represents element-wise multiplication, X̄ is the
weighted feature and Nf is the number of frequency points in the
mel space.

2.3. GANomaly

For this task, since only the normal sound sample are provided for
training, which indicates a unsupervised learning. To that end, we
adopt a semi-supervised learning method GANomaly, which only
trains normal samples and learns the high-dimensional features and
latent spatial features of normal audio. During testing phase, if the
test result is larger than distance metric from the normal sample
distribution, it indicates that the test sample distribution has outliers,
i.e., anomalous sound.

Figure illustrates the overview of this network that contains two
encoders, one decoder, and discriminator networks, and they are
employed within three sub-networks. First sub-network is an au-
toencoder network behaving as the generator part of the model.

The generator learns the representation of the input data and
reconstructs the input log-mel spectrum via the use of autoencoder
network, respectively. The structure of the first sub-network is as
follows. The generator G first obtains the input log-mel spectrum
x, and forward-passes it to the encoder network GE . The encoder
network GE contains five convolutional layers, and each layers fol-
lowed by a batch-norm[7] and Swish[8] activation. The Swish acti-
vation is defined by

f(x) = x · sigmoid(βx), (4)

where β is a constant or trainable parameter. When β = 0, Swish
is a linear activation function, and when β →∞, Swish becomes a
ReLU function. In this sense, the Swish function can be regarded as
a smooth function between the linear function and the ReLU func-
tion. The studies show that this activation on deep models is better
than ReLU function.After encoder, GE compresses x into a high-
dimensional feature vector z that is the bottleneck features of G,
where z = GE(x).The decoder part GD is the inverse process of
the encoder, which uses the convolutional transpose layers, Swish
activation, and batch-norm. The decoder upscales the vector z to
reconstruct the log-mel spectrum x as x̂, where x̂ = GD(z).

The second sub-network is an encoding network E, and this
network is used to compress the log-mel spectrum x̂ reconstructed
by generator G. Although E uses the same structure as GE , their
parameters are obviously different, where E downscales x̂ to its

feature representation ẑ = E(x̂). This structure is the core of
the network. It abandons most of the autoencoder-based anomaly
detection methods that are commonly used to infer anomalies by
comparing the difference between the original data and the recon-
structed data, and adopts a new method of comparing the original
data. The difference between the data and the reconstructed data in
the higher level of abstraction space is the way to infer anomalies,
and this additional level of abstraction greatly improves the ability
to resist noise interference and learn a more robust anomaly detec-
tion model.

The first sub-net work and the second sub-network forms the
generative network (G-Net) in the generative discriminant network.
G-net effectively learns the feature distribution of normal audio
data, and when the faulty data is the input to the network, the gen-
erator G cannot effectively reconstruct the input x, the vector ẑ ob-
tained by E will be more dissimilarity to vector z.

The third sub-network is a discriminant network (D-Net), which
is used to distinguish the original data x as true and the recon-
structed data x̂ as fake. Its structure is the same as GD . It is of
interest to point out that using the idea of generative confrontation
can train a better G-Net.

3. RESULTS

In this task, we only report results using the development set. In
Table 1, we present AUC results and pAUC in parentheses for both
the challenge baseline autoencoder model and our submissions for
this task.
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