
Detection and Classification of Acoustic Scenes and Events 2021  Challenge 
  

DCASE 2021 TASK 1A: LOW-COMPLEXITY ACOUSTIC SCENE CLASSIFICATION 

Technical Report 

Yingzi Liu, Jiangnan, LiangLuojun Zhao, Jia Liu, Weiyu Liu, Kexin Zhao, Long Zhang, Tanyue Xu 

Chuang Shi 

University of Electronic Science and Technology of China, Chengdu, China 

Corresponding Email:shichuang@uestc.edu.cn 

 

ABSTRACT 

This technical report describes the systems for the task 1/sub-

task A of the DCASE 2021 challenge. In order to reduce the num-

ber of model parameters, we add the feature reuse units to the deep 

residual network. Also the 1-bit-per-weight convolution layer are 

used in this paper. The log-mel spectrograms, delta features and 

delta-delta features are extracted to train the acoustic scene classi-

fication model. The HRTF and spectrum correction are used to 

augment the acoustic features. Our system achieves higher classi-

fication accuracies and lower log loss in the development dataset 

than baseline system. 

Index Terms— DCASE 2021, acoustic scene classifi-

cation, deep residual network, data augmentation 

1. INTRODUCTION 

In daily life, there are all kinds of sounds, such as the sound of a 

car engine in the street, people talking in the mall, the radio in the 

airport, the song of birds in the park [1]. These sounds contain a 

lot of environmental information. For computers, it takes training 

and learning to perceive sound scenes through sound analysis. The 

research on this subject is called sound scene classification (ASC). 

ASC can be used in the design of context-aware services, intelli-

gent wearable devices, robotics navigation systems, and audio ar-

chive management [2]. The DCASE Challenge (Detection and 

Classification of Acoustic Scenes and Events) is a technical com-

petition sponsored by the audio and acoustic signal processing 

(AASP) technical committee, IEEE signal processing society 

(SPS). It is one of the most authoritative international evaluation 

and competition in the field of audio signal processing and focuses 

on Acoustic scene Classification, Acoustic event Detection and 

identification. Acoustic scene classification is a regular task in the 

DCASE challenge series, being present in each of its editions up 

until now.  

In DCASE2021, there are two different subtasks of task 1. 

The subtask B is concerned with classification using audio and 

video modalities. The subtask A focus on classifying acoustic 

scenes with mismatched recording devices. It means that some de-

vices appear only in the evaluation dataset. What’s more, the 

model size of the ASC system is limited. The goal is to build a 

three-class classifier occupying no more than 128KB. 

Each consecutive edition of the challenge has brought a new 

and larger dataset than previous edition, making it possible to use 

deep neural networks that rely on large amounts of data for train-

ing [3]. Past entries into DCASE challenges have used the spec-

trogram and its variants for CNN processing, such as the short-

time Fourier transform (STFT), log mel spectrogram, mel fre-

quency cepstral coefficients (MFCC), constant-Q transform(CQT) 

[4]. In DCASE 2020 challenge, most of participants chose the log 

mel spectrogram as the features in their system [5]. So we prefer 

to extract log mel spectrogram in our system. Moreover, we extract 

delta features and delta-delta features to capture dynamic features. 

We use 1-bit-per-weight networks to satisfy task requirement. The 

HRTF, spectrum correction, mix-up and temporal crop are used 

for data augmentation. 

2. ARCHITECTURE 

2.1.  Network Architecture 

2.1.1. 1-bit-per-weight CNNs with feature reuse unit 

The CNNs used for acoustic scene classification in the past used 

1-10 million convolution weights, with a very large number of 

parameters. In the DCASE2021 task requirements, the number of 

model parameters is no more than 128KB. 1-bit-per-weight 

method introduced by McDonnell is used in this technical re-

port[6]. Figure 1 shows the difference between full precision con-

volution and 1-bit-per-weight convolution. 

 
Figure1: Difference between the full-precision and 1-bit-per-

weight networks[6]. 
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We used the 1-bit-per-weight method to train the wide resid-

ual network, therefore, each convolutional weight was set to one 

of two values following training, and hence could be stored using 

a single bit[7]. The wide residual network architecture is shown 

in Fig 2. 

 

  

 

Figure2: Wide Residual Network architecture [7]. 

 

As shown in Fig3, Feature reuse units(FR-unit) are intro-

duced to reduce the number of model parameters. After convolut-

ing the input feature map, the input feature was combined with 

output feature. Finally, the combined feature was transferred to 

the next layer. Through the reuse of low-level features, the total 

number of extracted features would not change, so as to ensure 

that the accuracy of optimized network would not change. 

 
Figure3: Using FR-unit to optimize single convolution. 

2.1.2. CNN-based Network with weight quantization 

In the other network, we use the network structure of CNN, which 

is a typical network model for training. And we use the weight 

quantization to handle the complexity restrictions. Our model 

consists of 1 input layer, 3 convolution layers, 1 fully connected 

layer, and 1 output layer, as shown in table1. And batch 

normalization layers, two max pooling layer, and an activation 

layer with the Softmax function are also applied in this model. 

Here Batch normalization (BN) is used to accelerate the learning 

process and improve the baseline level by regularization terms. 

Table 1: Network structure of the model 

 

2.2. Acoustic Features Extraction 

The samples in the DCASE2021 task 1 / subtask A dataset are 

monaural and have a common sampling rate of 44.1 kHz. The 

Librosa library is used to extract the acoustic features. A Short 

Time Fourier Transform (STFT) with a hamming window size of 

2048 and 50% overlap is used to extract the spectrogram. Then 

apply the log mel filter bank on the spectrogram to get the log mel 

spectrogram. There are 256 log mel filters in the filter bank that 

cover a frequency range from 0 to 22.05 kHz, yielding 431-frame 

spectrograms with 256 frequency bins. Also, the delta features 

and delta-delta features are added to form three-channel features. 

The size of the acoustic feature is (432,256,3). Finally, the fea-

tures are normalized by subtracting the mean and dividing the 

standard deviation. In order to train the other CNN-based network 

with weight quantization, the single log mel spectrogram with the 

shape of (128, 431,1) is extracted. 

2.3. Data Augmentation 

Four data augmentation methods are used in this technical re-

port ,including the HRTF[8,9], spectrum correction[10], mix-up 

and temporal crop[11]. In order to weaken the proportion of de-

vice A and reduce the error caused by device properties, only 

HRTF and spectrum correction methods are carried out on data of 

device A. 

input

BN,ReLU,conv

+

----
- ---

BN,ReLU,conv

BN,ReLU,conv

BN,ReLU,conv

BN,GAP,Softmax

+

BN,ReLU,conv

BN,ReLU,stride 2 

conv double channels
double channels 

3×3 avg pool 

stride 2

+

64 128

64 64

128
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Input 128×431×1  

3×3 Conv2D (pad=1, stride=1)-16-BN-ReLU     

3×3 Conv2D (pad=1, stride=1)-16-BN-ReLU     

3×3 Conv2D (pad=1, stride=1)-32-BN-ReLU    

3×3 Conv2D (pad=1, stride=1)-32-BN-ReLU    

5×5 MaxPooling2D 

3×3 Conv2D (pad=1, stride=1)-32-BN-ReLU    

3×3 Conv2D (pad=1, stride=1)-32-BN-ReLU 

   3×3 Conv2D (pad=1, stride=1)-32-BN-ReLU 

12×86 MaxPooling2D 

Dense ((64,100), activation='relu') 

Dense ((100,10), activation='softmax') 
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2.4. Model size 

The size calculations of the Onebit_agm model, Onebit_noagm 

model and FR_agm model are given in Table 2 and Table 3. 

The Onebit_agm model and the Onebit_ noagm model have 

the same structure, except that one uses data enhancement and the 

other does not. Trainable parameters of batch normalized layer are 

used only in BN_1 and BN_3. In Group0, Group1, and Group2, 

all convolutional layer parameters are stored as single bits, and 

the BN layer is stored as float32. The first convolution layer and 

the last convolution layer are stored using float32. The total size 

of the final model is 42.5KB. 

Table 2: Size of onebit_agm model and onebit_noagm model 

 

In the FR_agm model, Feature reuse units is added to reduce 

the number of parameters while doubling the number of channels 

in the convolution kernel. When the number of channels is differ-

ent, the 1×1 convolution layer is used to change the number of 

channels. 

Table 3: Size of FR_agm model 

 

3. EXPERIMENTS 

3.1.  Dataset 

The dataset of the task 1/subtask A of the DCASE2021 challenge 

contains recordings from 12 European cities in 10 different acous-

tic scenes using 4 different devices. Synthetic data for 11 mobile 

devices was created based on the original recordings. Of the 12 

cities, two are present only in the evaluation set. Additionally, in 

order to simulate realistic recordings, 11 mobile devices S1-S11 

are simulated using the audio recorded with device A, impulse 

responses recorded with real devices, and additional dynamic 

range compression. The development set contains data from 10 

cities and 9 devices: 3 real devices (A, B, C) and 6 simulated de-

vices (S1-S6). The total amount of audio in the development set 

is 64 hours. The evaluation dataset contains data from 12 cities, 

10 acoustic scenes, 11 devices. There are five new devices: a real 

device D and simulated devices S7-S11. Evaluation data contains 

22 hours of audio. 

3.2. Results and Submissions 

Models are trained using an Adam optimizer with a batch size of 

32, and the cross-entropy function. Each model is trained for 256 

epochs. The initial learning rate is set to 0.001 and decreased by a 

factor 0.5 every 35 epochs. Then, the model with the highest test-

ing accuracy is saved.  

Table 4 lists the models that we submit. The main metric for 

this task is the multiclass cross-entropy (Log loss). The macro-

average accuracy (average of the class-wise accuracies) is used as 

a secondary metric. All submissions achieve lower Log loss in the 

development dataset than baseline system.  

Table 4: Results of development dataset 

Model Log loss Accu-

racy 

Model size 

Baseline 1.473 0.477 90.3KB 

FR_agm 0.909 0.682 106.7KB 

Onebit_agm 0.923 0.680 42.5KB 

Onebit_noagm 0.990 0.650 42.5KB 

weight_qz 1.434 0.454 119KB 
⚫ FR_agm is the one-bit-per-weight model with feature reuse unit that 

used data augmentation. 

⚫ onebit_agm is the one-bit-per-weight model that used data aug-
mentation. 

⚫ onebit_noagm is the one-bit-per-weight model that not used data 

augmentation.  
⚫ weight_qz is the CNN-based model with weight quantization. 

4. CONCLUSIONS 

In this technical report, we have described the systems for the task 

1/subtask A of the DCASE 2021 challenge. We use the HRTF, 

spectrum correction, mix-up and temporal crop to augment the 

acoustic features. Our system used a 1-bit-per-weight Resnet with 

the feature reuse unit. The experiment results over DCASE2021 

development dataset targeting task 1A review that our method are 

effective to obtain the lower log loss. 
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