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ABSTRACT

We present our submission to the DCASE2021 Challenge Task 2,
which aims to promote research in anomalous sound detection. We
found that blending the predictions of various anomaly detectors,
rather than relying on well-known domain adaptation techniques
alone, gave us the best performance under domain shifted condi-
tions. Our submission is composed of two self-supervised classifier
models, a probabilistic model we call NF-CDEE, and an ensemble
of the three.

Index Terms— DCASE, anomaly detection, domain shift, ma-
chine condition monitoring, machine health monitoring.

1. INTRODUCTION

The DCASE2021 Challenge Task 2 is concerned with identifying
anomalous behavior from a target machine using sound recordings
[1]. A major difference between this task and other DCASE tasks
is that it is not supervised. Accordingly, the available training data
only contains samples from the normal-state distributions. A further
complication added to this challenge is that the acoustic character-
istics of the training data and of the test data are different — this
condition is known as domain shift and there are some known re-
sults for reducing the performance gap between the training and test
data [2, 3, 4, 5, 6, 7, 8]. In our experiments, while we recognize the
potential of these techniques, we did not generally gain much from
using these methods alone.

In our submission, we used two self-supervised classifiers that
classified the section IDs similar to the approach several teams
followed in DCASE2020 [9, 10, 11, 12, 13]. For a third model,
we introduce a model that relies on several normalizing flows to
estimate the conditional density of input Mel spectrogram sec-
tions and use their combined outputs to produce an anomaly score
[14, 15, 16, 17, 18, 19, 20, 21, 22].

In the sequel we describe each model, how it was trained, its
hyperparameters, and their respective results. In order to put the
results into perspective, we include the baseline scores on Tables 1
and 2. The data used in this challenge is 16 KHz, single-channel,

ToyCar | ToyTrain fan gearbox | pump | slider valve
h-mean AUC 0.5604 0.5746 0.6156 | 0.6670 | 0.6189 | 0.5926 | 0.5651
h-mean pAUC 0.5637 0.5161 0.6302 0.5916 0.5737 | 0.5600 | 0.5264

Table 2: Baseline MobileNetV2 Scores

2. ARCHITECTURES

The first model described below builds on the work from [9]. In
particular, the encoder network has been updated to use 1D convo-
lutions rather than 2D as in [9]. The input to this model is a spec-
trogram with or without a Mel transformation. The second model
builds on the well-known WaveNet architecture [25] by adding an
x-vector [26] classification head after the dilated convolutions — in
a sense, the WaveNet functions as a time-series encoder for the x-
vector component. Both models are trained to reduce the cross en-
tropy loss between predictions and the section IDs. The third model
differs from the first two models in that it is completely unsuper-
vised and attempts to learn several distributions of some Mel spec-
trogram bins conditioned on the remaining bins. We call these ap-
proaches complementary because of the different input modalities
and learning approaches. The last system provided is an ensemble
of the three.

All our development was done using PyTorch [27] and spectro-
grams were computed using nnAudio [28]. The third model addi-
tionally used the Pyro [29] probabilistic programming library.

2.1. XVectorlD

A high-level view of the architecture of the first model is shown in
Table 3. We denote additive margin softmax as AMS [30].

We use the term “standardizer” as a preprocessing step done
before passing data to the rest of the network. In most cases, this is
simply a batch-norm layer with the learnable parameters disabled.
In this way, this batch-norm will perform the usual frequency-wise
normalization once the running statistics have converged. However,
for gearbox and ToyCar we used an AutoDIAL layer [4] instead.

audio. For more detalls, please see [] N 23, 24] ToyCar ToyTrain fan gearbox pump slider valve
STFT MEL STFT MEL STFT STFT STFT
standardizer | standardizer | standardizer | standardizer | standardizer | standardizer | standardizer
ToyCar | ToyTrain fan gearbox | pump | slider valve encoder encoder encoder encoder encoder encoder encoder
h-mean AUC 0.6249 0.6171 0.6324 0.6597 0.6192 | 0.6674 | 0.5341 x-vector X-vector x-vector X-vector x-vector X-vector x-vector
h-mean pAUC | 0.5236 0.5381 | 0.5338 | 0.5276 | 0.5441 | 0.5594 | 0.5054 AMS AMS AMS AMS AMS AMS AMS

Table 1: Baseline Autoencoder Scores

Table 3: XVector1D High-level Architectures
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5xC(192,192) | 5x C(192,192) | 5x C(192,192) | 4x C(192,192) | 5x C(192,192) | 5x C(192,192) | 5x C(192,192)
C(192,90)

Table 4: Encoder Parameters

The encoder used in this model uses 1D convolutions with ker-
nel size 3 and leaky-relu activations. The number of layers varied
with machine as shown on Table 4 — in this table, we use “C” to
mean 1D convolution.

The x-vector component used here remains largely the same
as in [9] except the interface to the encoder had to be adapted as
expected to accept the 1D encoder output.

2.1.1. Preprocessing

This model did not use any special preprocessing or augmentation.
The logarithm was taken for both the STFT and the Mel spectro-
grams. All spectrograms were computed with frequency min and
max values set to 100 and 8000 Hertz, respectively.

2.1.2. Training & Results

The model was trained to predict the section ID meta-data parame-
ter using the categorical cross entropy loss function. We found that
the spectrogram parameters had a big effect on the performance.
Parameters like the number of input samples, the number of points
used for the FFT, the hop length can have a significant effect. We
generally used the AdamW optimizer with the default learning rate
of 1 x 1073 and weight decay set to 1 x 10~%. However, we
used ASGD with the default learning rate (and no weight decay) for
gearbox. Generally, the training losses converge more slowly us-
ing ASGD but sometimes the slower trajectory spends more epochs
close to an optimal region with respect to AUC and this can yield
better results. The training was usually run for 300 epochs, using
all the training data from the development and evaluation datasets.
Lastly, we computed the average embedding, during training, using
the embedding from the layer prior to the final AMS classification
layer. At test time, the average embedding was used to compute
the cosine and Mahalanobis distances to the test embedding which
served as additional options for anomaly scores. Table 5 shows the
results.

ToyCar ToyTrain fan gearbox pump slider valve
batch size 128 64 128 64 128 128 64

input samples 16384 16384 16384 98000 16384 16384 98000

no. Mels 2048 128 2048 128 2048 2048 2048

no. FFT 4096 1024 4096 1024 4096 4096 4096

hop 80 512 512 80 512 512 512
scoring cosine | mahalanobis | softmax halanobi softmax | softmax | softmax
h-mean AUC | 0.6702 0.7193 0.7171 0.8342 0.7799 | 0.7871 0.9032
h-mean pAUC | 0.6233 0.6772 0.7295 0.7443 0.6684 | 0.6728 | 0.7724

Table 5: XVector1D Scoring Results

2.2. WaveNet-XVector

We explored the use of a WaveNet model processing the audio sam-
ples directly. For details on the architecture we refer the reader to
the original publication [25]. In the original paper the authors ex-
plain that the model can be readily adapted to classification tasks
and in their classification experiment they add a mean pooling layer
after the dilated convolutions followed by “a few non-causal con-
volutions”. The training proceeds with two loss terms: one for

ToyCar ToyTrain fan gearbox pump slider valve ToyCar ToyTrain fan gearbox pump slider valve
AutoDIAL batch-norm AutoDIAL AutoDIAL AutoDIAL AutoDIAL AutoDIAL input proc. | batch-norm | batch-norm | batch-norm | batch-norm | batch-norm | batch-norm | AutoDIAL
C(128,192) C(128,192) C(128,192) C(128,192) C(128,192) C(128,192) C(128,192)

blocks 1 1 1 1 1 1 1

layers 14 14 14 14 14 14 14
dilation ch. 32 32 32 64 64 32 32
residual ch. 32 32 32 64 64 32 32

skip ch. 32 32 32 64 64 32 32

Table 6: WaveNet Parameters

predicting the next sample and the other is the classification loss.
We follow this procedure in that we use a mean pooling layer (with
kernel size 10) and train with the two loss functions but instead of
using a few convolutions, we use an x-vector component, with AMS
top layer, as with the XVector1D model. In this way, one can con-
sider this model a variant of the XVector1D model which uses an
audio-only encoder.

2.2.1. Preprocessing

For valve and ToyTrain we used the Teager-Kaiser energy operator
to preprocess the audio [31, 32, 33, 34]. The motivation was that,
because the valve noises are sparse and impulsive events, the noise
suppression provided by the Teager-Kaiser operator would improve
the signal-to-noise ratio in the valve recordings. Despite improving
the results for valve and ToyTrain, the improvement was modest.

2.2.2. Training & Results

To train this model, we used the Adamax optimizer with the default
learning rate for 200 epochs. Table 7 shows the performance of this
model.

ToyCar | ToyTrain fan gearbox | pump slider valve
batch size 128 128 128 64 64 128 128
input samples 16384 16384 16384 16384 16384 16384 16384
scoring softmax softmax softmax | softmax | softmax | softmax | softmax
h-mean AUC 0.5843 0.6641 0.8122 0.7156 0.7543 0.7184 | 0.7297
h-mean pAUC | 0.5629 0.5696 0.8025 0.5964 0.6506 | 0.6239 | 0.6206

Table 7: WaveNet-XVector Scoring Results

2.3. NF-CDEE

For our third system, we attempt to model the probability density
function of the Mel spectrograms of the machine sounds, for a sin-
gle machine, using normalizing flows. We used the Pyro [29] prob-
abilistic programming library to develop this model. We found that
training a model to fit a distribution with the same dimensions as
Mel bins to be somewhat unstable. In order to improve the sta-
bility we instead estimate several conditional densities and trained
them in a single model, minimizing the sum of their negative log-
likelihoods. We consider this model an ensemble of conditional
density anomaly detectors. Hence, we call this model NF-CDEE,
because it uses normalizing flows and it is a conditional density es-
timator ensemble. Each conditional density estimator fits the distri-
bution of a n-bin segment of input spectrograms conditioned on the
remaining bins. This reduces the instability due to dimensionality.
The parameter n and the amount of overlap are tunable by the user.
For this work, we chose n = 32 with no overlap. Each normaliz-
ing flow uses a single conditional spline with 16 count-bins and the
default hidden layer dimensions — these are also tunable but in our
experiments they did not significantly affect the performance.

To summarize, each estimator outputs the probability
p(salsac) where s is a vector of dimension equal to the number
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of Mel bins m that is indexed by the set Z = {1,...,m}. Aisan
n-element subset of Z, and A€ is its complement Z — A. We define
the likelihood of the normal state as:

p(normal) = Hp(sAi|SAf) @

where i € [1,..., k] and k is a positive integer provided by the
user — it is the number of estimators in the ensemble. To train the
model, we minimize the negative logarithm of p(normal). There-
fore, the output of NF-CDEE is the sum of the individual negative
log-likelihoods.

2.3.1. Training & Results

To train this model we converted the input audio to 256-bin Mel
spectrograms, computed using 8192-point FFTs with hop-length
512, and applied frequency-wise normalization before passing to
the conditional density estimators. Each model was trained with
all the sections of the development (or evaluation) training data, per
machine type — except for fan for which we trained a model for each
section. To further reduce training instability, caused by the nor-
malizing flow determinant computation, we take the mean across
the time dimension. This last step was important for stabilizing the
training of the ensemble. As previously stated the loss function used
was the sum of the negative log-likelihoods and this also served as
the anomaly score.

For the optimizer, we used the same optimizer as the XVec-
tor1D, with gradient clipping. In our experiments this model gener-
ally needs to train for about 50 epochs. Table 8 shows the results.

ToyCar | ToyTrain fan gearbox | pump | slider valve
batch size 32 32 32 32 32 32 32
input frames 192 192 192 192 192 192 192
m 256 256 256 256 256 256 256
n 32 32 32 32 32 32 32
k 8 8 8 8 8 8 8
scoring NLL NLL NLL NLL NLL NLL NLL
h-mean AUC 0.8657 0.7797 0.7866 | 0.8081 | 0.6993 | 0.7483 | 0.6130
h-mean pAUC | 0.7831 0.6031 0.6024 | 0.6513 | 0.5655 | 0.6054 | 0.5275

Table 8: NF-CDEE Scoring Results

2.4. Ensemble

For the last system we combined the three models by first stan-
dardizing the training data scores and then searching over a grid of
convex combinations, similar to [35]. Table 9 shows the results.

ToyCar | ToyTrain fan gearbox | pump | slider valve
WaveNet weight 0.03 0.03 1.0 0.04 0.32 0.02 0
XVectorID weight 0.06 0.55 0 0.61 0.68 0.52 1
NF-CDEE weight 0.91 0.42 0 0.35 0 0.46 0
h-mean AUC 0.8745 0.7756 0.8122 | 0.8613 | 0.7958 | 0.8287 | 0.9032
h-mean pAUC 0.7837 0.7048 0.8025 | 0.7635 | 0.6790 | 0.6925 | 0.7724

Table 9: Ensemble Scoring Results

3. CONCLUSIONS

We have outlined our submission to the DCASE2021 Challenge
Task 2, which featured a domain shift between the training and test
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distributions. We found it concerning that domain adaptation meth-
ods that seem to do well for other modalities, especially vision, do
not seem to work as well for audio (at least in our implementa-
tions). This discrepancy gives the DCASE2021 Challenge a greater
relevance, because it highlights the need for the audio community
to generate more effective domain adaptation methods for audio.

Of the models we developed, we find NF-CDEE to be particu-
larly promising because it is unsupervised. In real-world settings it
is not always practical to leverage meta-data, even when it is possi-
ble to do so. Moreover, expect the ensembling nature of the model
to perform better in domain shift situations. Going forward we plan
to further develop this model.
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