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ABSTRACT 

This report described our contribution to Unsupervised Detec-
tion of Anomalous Sounds on DCASE 2021 challenge (Task2). 
Previous research results show that AE and outlier detection is a 
very effective solution to abnormal sound detection (ASD). This 
design based on previous research, using IDNN, FREAK and 
MobileFace Nets to implement unsupervised ASD. 

Index Terms— IDNN, FREAK, MobileNetV2, 
ArcFace 

1. INTRODUCTION 

At present, in all research directions of sound signals, the most 
popular should be the research of sound recognition technology. 
The goal of anomalous sound detection (ASD) is to identify 
anomalous sounds when only sounds of the "normal" condition 
are available beforehand. ASD has been used for a variety of 
purposes, including audio surveillance, animal husbandry, prod-
uct inspection and predictive maintenance. For the last applica-
tion, because abnormal sounds usually indicate that the mechani-
cal equipment is malfunctioning. Discovering abnormalities 
quickly will reduce the number of defective products and prevent 
the spread of damage. 

ASD tasks can be roughly divided into supervised ASD and 
unsupervised ASD. The difference lies in the definition of ab-
normal sound [1]. Supervised ASD detects "determined" abnor-
mal sounds, such as gunshots or screams, which is a rare sound 
event detection (SED). Once anomalies have been defined, even 
if anomalies are rarer than normal sounds, we can collect a data 
set of target abnormal sounds. In contrast, we cannot intentional-
ly damage expensive machines in a factory to obtain abnormal 
sound samples [2]-[4]. Meanwhile, the environment of factory 
machine operation is relatively complex. It is difficult to obtain a 
complete set of fault samples and apply supervised learning in 
fault recognition. Therefore, this type of task is reasonably con-
sidered as an unsupervised classification problem. 

In this report, according to the requirements of DCASE 
2021 challenge task 2, we present four methods for industrial 
equipment to detect unknown abnormal sounds. The deviation 
between the normal model and the observed sound is calculated. 
Deviations are often referred to as "abnormal scores". The normal 
model represents the concept of normal behavior trained from 

normal sound training data. When the abnormal score is higher 
than a predetermined threshold, the observed sound is recognized 
as an abnormal sound. 

2. PROPOSED APPROACH 

2.1. Ensemble of classification methods  

Inspired by the baseline system, we integrated two classification 
systems: one is the same as MobileNetV2 in baseline, the other 
uses MobileFace Nets as proposed [5]-[6]. A general view of our 
system is shown in Table 1. 

Table1: Correspond machine types with models 

Machine Type Classification Model 
Fan MobileNetV2 baseline 
Gearbox MobileNetV2 baseline 
Pump MobileFace Nets 
Slider MobileFace Nets 
Toycar MobileFace Nets 
Toytrain MobileFace Nets 
Valve MobileNetV2 baseline 

The input shape of MobileFace Nets is (1×1024×32). We 
load the audio clips and deal with STFT using librosa package 
[7], the length of the window is 2046 and the hop length is 512. 
Then the spectrograms are split into 10×(1024×32) columns 
(padding with zeros). The architecture of network is shown as 
Table 2. Column t, c, n, s refers to the expansion factor, output 
channels, the number of repetitions and stride. 

Table2: Architecture of MobileFaceNets 

Input Layer t c n s 
1×1024×32 Conv3×3 / 64 1 2 
64×512×16 Depthwise Conv3×3 / 64 1 1 
64×512×16 Bottleneck 2 64 5 2 
64×256×8 Bottleneck 4 128 1 2 

128×128×4 Bottleneck 2 128 6 2 
128×64×2 Bottleneck 4 128 1 2 
128×32×1 Bottleneck 2 128 2 1 
128×32×1 Conv1×1 / 512 1 1 
512×32×1 Linear GDConv32×1 / 512 1 1 
512×1×1 Linear Conv1×1 / 128 1 1 
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Through this network, we got the 128-dimension embedding 
layer. The next step is to apply it to an ArcFace Layer. While 
testing a section00 sample's anomaly score, the test sample's 
embedding is compared with data of all the section00 audios. We 
average the most similar K results as the similarity score. We 
train our models on a single NVIDIA RTX2070 max-Q GPU. All 
the hyper-parameters are summarized in Table3. 

Table3. Summarization of hyper-parameters 

Parameters for audio processing 
Sampling rate 16000Hz 
FFT length 2046 
FFT hop length 512 
ArcFace loss parameters 
Margin Parameter m 0.05 
Re-scale Factor s 30 
Cosine annealing strategy 
Initial learning rate 0.001 
Epochs 100 
Other parameters 
Batch size 48 
K 10 

2.2. IDNN 

In the conditional method AE, it attempted to detect anomalies 
based on reconstruction errors. However, it may performance 
badly in some machines whose sound is no-stationary, because it 
is difficult to predict the edge frames. So, we imitate use Interpo-
lation deep neural network (IDNN) to replace the AE [8]. In the 
IDNN, we remove the center frame, and use the other four frames 
as inputs. And then the neural net output the center frames. So, 
the reconstruction error is the difference between the original 
input and reconstructed output. When we train the model, we 
only use the normal machine, so we minimize the reconstruction 
error. The IDNN loss function is:  

 
2
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We use a fully connected net-work as the architecture, and 
the structure is :[512 128 128 128 8 128 128 128 128]. 

Following the baseline model, we split 10s file into 64ms 
each frame. And hop length is 32ms. And the we use 1024-FFT 
and 128 Mel bins to extract the feature of each frames. We use 5 
frames as inputs. 

2.3. VIDNN without KL divergence  

In this section we introduce the Variational Interpolation Deep 
Neural Network (VIDNN), which is an adaptation of the Varia-
tional Autoencoder [8]. 

2.3.1. Model setup 

Unlike the normal VAE, which reconstruct the whole input 
spectrogram from the latent space extracted from whole hidden 
layer, the IDNN utilizes multiple frames of a spectrogram whose 
center frame is removed as an input, and it predicts an interpola-
tion of the removed frame as an output as the figure 1. 

 
Figure1: Proposed architecture of VIDNN [8] 

Also, in our experiment, we coincidently removed the kl 
Divergence of the VAE and the find out the result has been 
improved. This situation may be caused by that the elements in 
latent space are not a simple normal distribution. 

For our training dataset is extremely unbalanced, we train 
one model for one source domain and one target domain to try to 
decrease this unbalance. 

2.3.2. Model architecture  

Our model architecture is very closed to the baseline. 

Table4: Example of placing a figure with experimental results. 

Layer I O 
Dense 640 128 
Dense 128 128 
Dense 128 128 
Dense 128 128 

Dense (μ) 128 8 
Dense (σ) 128 8 
z=N(μ,σ) 8,8 8 

Dense 8 128 
Dense 128 128 
Dense 128 128 
Dense 128 128 

2.3.3. Training 

Our loss function is MSEloss for predicted frame and real 
frame. The model is trained for 100 epoch using ADAM 
update rule. Learning rate was set to 0.001 at the beginning, 
and then decreased after the 80th epoch. 

2.4. FREAK  

Inspired by [9], we also tried to use Freak to solve ASD task.  

2.4.1. Model setup  

FREAK is an adaptation of the WaveNet in frequency domain 
instead of the time domain. Typical FREAK is trying to predict-
ing the next frame in the spectrogram of a recording of interest. 
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Inspired by IDNN, we make our FREAK predict the center 
frame. 

2.4.2. Model architecture  

Model architecture is shown in next figures. 

Table 5: WaveNet Block 

Layer channels kernel dilation groups 
CausalConv1d 4 3 1 4 
ResidualLayer 4 3 1 4 
ResidualLayer 4 3 2 4 
ResidualLayer 4 3 4 4 
ResidualLayer 4 3 8 4 
ResidualLayer 4 3 1 4 
ResidualLayer 4 3 2 4 
ResidualLayer 4 3 4 4 
ResidualLayer 4 3 8 4 

Architecture (table 5) is based on WaveNet structure, and 
frame are treated as channels. Frequency bins are treated as 
group and processed separately. Residual block is strictly same as 
standard WaveNet. The skip size is set to 2. Skips of the channels 
are cat together and reshaped to (batchsize,4*2*group). Then two 
dense layers are applied for the final predict. 

2.4.3. Training 

Our loss function is MSEloss for predicted frame and real 
frame. The model is trained for 40 epochs using ADAM 
update rule. Learning rate was set to 0.0001 at the beginning, 
and then decreased after the 80th epoch. 

3. EXPERIMENTAL SETUP 

3.1. Dataset  

The data used for this task comprise ToyADMOS and MIMII 
data sets which provided by the task organizers [11]-[12]. Data 
sets is divided into two parts, development datasets and evalua-
tion datasets. And they are split into a training and testing subset. 
The training datasets only contained normal samples, but the 
testing datasets contained normal and abnormal samples. 
Each subset consists of three sections for each machine type 
(machine include fan, gearbox, slider, toycar, toytrain, valve). 
Different sections expressed machine in different domain. 

3.2. Pre-Processing   

Pre-Processing of task2_2 - task2_4 are same as the baseline. 
Pre-Processing of task2_1 is described in section 2.1 

4. RESULT 

The AUC and pAUC on the development dataset are shown 
below.  

Table 6: Result of Classification Methods 

Machine Type AUC pAUC 

Fan 61.8% 64.7% 
Gearbox 63.7% 56.2% 

Pump 67.2% 56.8% 
Slider 69.2% 60.7% 
Toycar 63.5% 56.9% 

Toytrain 60.4% 53.5% 
Valve 64.5% 53.9% 
Total 64.2% 57.3% 

Table 7: Result of VIDNN 

Machine Type AUC pAUC 
Fan 66.5% 54.5% 

Gearbox 70.0% 53.6% 
Pump 60.8% 54.5% 
Slider 67.6% 56.4% 
Toycar 71.4% 58.9% 

Toytrain 60.4% 53.5% 
Valve 59.0% 50.5% 
Total 65.8% 54.5% 

Table 8: Result of FREAK 

Machine Type AUC pAUC 
Fan 62.2% 53.4% 

Gearbox 65.4% 52.6% 
Pump 62.4% 54.7% 
Slider 66.4% 55.1% 
Toycar 66.0% 54.0% 

Toytrain 64.2% 53.9% 
Valve 56.5% 50.3% 
Total 63.1% 53.4% 

Table 9: Result of IDNN 

Machine Type AUC pAUC 
Fan 64.4% 53.14% 

Gearbox 68.4% 53.87% 
Pump 61.48% 54.37% 
Slider 67.80% 56.05% 
Toycar 66.60% 57.78% 

Toytrain 67.55% 57.78% 
Valve 57.37% 50.26% 
Total 64.6% 54.2% 

Table 10: Result of MobileNetV2-based baseline 

Machine Type AUC pAUC 
Fan 61.56% 63.02% 

Gearbox 66.70% 59.16% 
Pump 61.89% 57.37% 
Slider 59.26% 56.00% 
Toycar 56.04% 56.37% 

Toytrain 57.46% 51.61% 
Valve 56.51% 52.64% 
Total 59.84% 56.59% 

Table 11: Result of AE baseline 

Machine Type AUC pAUC 
Fan 63.24 53.38% 

Gearbox 65.97% 52.76% 
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Pump 61.92% 54.41% 
Slider 66.74% 55.94% 
Toycar 62.49% 52.36% 

Toytrain 62.21% 53.31% 
Valve 53.41% 50.54% 
Total 64.6% 54.2% 
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