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ABSTRACT

Audio captioning aims to use natural language to describe the con-
tent of audio data. This technical report presents an automated audio
captioning system submitted to Task 6 of the DCASE 2021 chal-
lenge. The proposed system is based on an encoder-decoder ar-
chitecture, consisting of a convolutional neural network (CNN) en-
coder and a Transformer decoder. We further improve the system
with two techniques, namely, pre-training the model via transfer
learning techniques, either on upstream audio-related tasks or large
in-domain datasets, and incorporating evaluation metrics into the
optimization of the model with reinforcement learning techniques,
which help address the problem caused by the mismatch between the
evaluation metrics and the loss function. The results show that both
techniques can further improve the performance of the captioning
system. The overall system achieves a SPIDEr score of 0.277 on
the Clotho evaluation set, which outperforms the top-ranked system
from the DCASE 2020 challenge.

Index Terms— audio captioning, transfer learning, sequence-
to-sequence model, reinforcement learning

1. INTRODUCTION

An automated audio captioning (AAC) system describes an audio
signal using natural language [1], which is a cross-modal translation
task involving the technologies of audio processing and natural lan-
guage processing. Generating a meaningful description for an audio
clip not only requires recognizing audio events but also their prop-
erties, activities as well as spatial-temporal relationships between
different audio objects [2, 3, 4]. Audio captioning could be useful in
several applications, such as subtitling for sound in a television pro-
gram, assisting the hearing-impaired to understand environmental
sounds, and analysing sounds in smart cities for security surveil-
lance.

The encoder-decoder architecture with CNN-Transformer was
shown to give excellent performance in the DCASE 2020 challenge
[2], and thus is chosen as the baseline system in our work. Audio
captioning requires extracting features from the audio modality in
the encoder and mapping them into the feature space of the language
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Figure 1: Architecture of the proposed model.

modality in the decoder, which is a challenging cross-modal trans-
lation task. Training an end-to-end audio captioning system from
scratch becomes even more difficult, when only a small amount of
data is available. Thus, in this work, we investigate how pre-trained
models can help address this challenge and improve the performance
of an audio captioning system. Another problem in the text genera-
tion task is the mismatch between the evaluation metrics and the loss
function. The evaluation metrics are discrete and non-differentiable,
and thus cannot be optimized directly by back-propagation. To ad-
dress this problem, we introduce reinforcement learning by incor-
porating the evaluation metrics into the optimisation of the learning
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Figure 2: Training stages of the proposed system. The model is firstly pre-trained on AudioCaps dataset, then trained on Clotho dataset.

Finally, reinforcement learning is used to optimize the CIDEr score.

system.

This report describes the methods we submitted to Task 6 of
DCASE 2021 challenge. Our systems are based on a sequence-
to-sequence framework, formed by a CNN encoder and a Trans-
former decoder, with two additional improvements, including the
use of transfer learning from a pre-trained model and the use of rein-
forcement learning (RL) for optimization on evaluation metrics (e.g.
CIDERy).

The remaining sections of this report are organised as follows. In
Section 2, the proposed system is described in detail. Experimental
setup is presented in Section 3. Results are shown in Section 4.
Finally, conclusion are drawn in Section 5.

2. SYSTEM DESCRIPTION

The proposed system is based on a traditional sequence-to-sequence
structure which consists of a CNN encoder and a Transformer de-
coder'. This system is then further improved with two techniques.
First, transfer learning is introduced to improve the system by using
pre-trained models. Second, reinforcement learning is used to op-
timize the evaluation metric directly. The diagram of the proposed
model is shown in Figure 1, while the training procedure is shown
in Figure 2.

2.1. CNN encoder

To prevent over-fitting, a relatively simple 10-layer convolutional
neural network (CNN) proposed in the pre-trained audio neural net-
works (PANNSs) [5] is used as the encoder of our system. The 10-
layer CNN consists of four convolutional blocks where each has
two convolutional layers with a kernel size of 3 x 3. Batch normal-
ization [6] and ReLU nonliearity are used after each convolutional
layer. The number of channels in each block are 64, 128, 256 and
512, respectively, and an average pooling layer with kernel size 2 x 2
is applied between them for down-sampling. Global average pool-
ing is applied along the frequency axis after the last convolutional
block and two fully connected layers are followed to further increase
the representational ability and to ensure the dimensionality of the
output is compatible with the decoder.

"https://github.com/XinhaoMei/DCASE2021_task6_v2.
git

2.2. Transformer decoder

The decoder is a standard Transformer followed by a classifier [7].
The decoder receives the output of the encoder and outputs a proba-
bility distribution along the vocabulary. Transformers are designed
to handle sequential data and show stat-of-the-art performance in
generation tasks in the area of natural language processing. As the
captions in the Clotho dataset are short in length and all of them are
between 8 to 20 words, the decoder consists of 2 layers with 4 heads
and the dimension of the hidden layer is 128.

2.3. Transfer learning

The use of external data and pre-trained models is allowed in this
task, which allows transfer learning to be used. We introduce two
transfer learning methods, where the first is transferring from an
upstream task while the second is from a larger in-domain dataset.

2.3.1. Pre-trained model for encoder

Different pre-trained neural networks for audio-related tasks have
recently been published. PANNSs are pre-trained on the AudioSet
dataset and show a powerful ability in extracting audio features
in different downstream audio pattern recognition tasks [5, 8, 9].
PANN:Ss are used to initialize the parameters of the encoder in all of
the experiments.

2.3.2. External data for pre-training

Transfer learning from large datasets to small in-domain datasets
is demonstrated to be effective in many tasks. The related work
in audio retrieval shows that pre-training the model on the large
AudioCaps dataset and then fine-tuning on the Clotho dataset can
provide better performance [10]. Inspired by these experimental
results, AudioCaps is introduced to pre-train the proposed model
and then the model is fine-tuned on the Clotho dataset.

2.4. Fine-tuning via reinforcement learning

The performance of captioning systems can be evaluated by vari-
ous discrete metrics such as BLUE, CIDEr and SPIDEr [11, 12, 13].
All these metrics are non-differentiable and cannot be directly op-
timized by back-propagation. Thus, the training objective of the
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Model BLUE; BLUE:; BLUE3 BLUE; ROUGE; METERO CIDEr SPICE SPIDEr
Baseline 0.378 0.119 0.050 0.017 0.263 0.078 0.075 0.028 0.051
PANNs-ZR 0.615 0.403 0.270 0.171 0.392 0.179 0412  0.122 0.268
PANNs-MR 0.635 0.406 0.268 0.166 0.400 0.176 0412  0.121 0.266
PANNs-AC-ZW  0.621 0.407 0.273 0.177 0.395 0.179 0.431 0.122 0.277
PANNs-AC-ZR 0.625 0412 0.278 0.178 0.401 0.176 0.428 0.126 0.277

Challenge

Table 1: Scores of our submitted models on the Clotho evaluation set. PANNS-ZR and PANNs-MR are all trained on Clotho without using
AudioCaps but using randomly-initialized word embeddings, PANNs-ZR uses “zero value masking” as SpecAugment masking type while
PANNSs-MR uses “mini-batch based mixture masking”. PANNs-AC-ZW and PANNs-AC-ZR use AudioCaps to pre-train the model and use
“zero value masking” as the masking type of SpecAugment. PANNs-AC-ZW uses the pre-trained word embeddings while PANNs-AC-ZR

uses the randomly-initialized word embeddings.

proposed model is to optimize the cross-entropy (CE) loss between
the predicted caption and the ground-truth caption. However, the
mismatch between the CE loss and the evaluation metrics may lead
to performance degradation. To address this issue, reinforcement
learning is introduced in our work to optimize the evaluation metric
directly, which is then back-propagated in the form of a reward. Pre-
vious studies have shown that using rewards from greedy-sampled
sentences as the baseline can reduce the high variance of rewards
[14]. Subsequent work in [3] showed that the self-critical sequence
training (SCST) approach significantly improves the performance
on audio captioning tasks, which is used here to optimize CIDEr
directly.

3. EXPERIMENTS

3.1. Dataset
3.1.1. Clotho

Clotho is an audio captioning dataset containing a total of 6974 au-
dio samples collected from the Freesound platform and annotated
on Amazon Mechanical Turk by annotators from English-speaking
countries. To encourage caption diversity, each audio clip is pro-
vided with 5 captions annotated by different annotators, thus there
are in total 34870 captions. The duration of the audio samples is uni-
formly ranged from 15 to 30 seconds. Captions are post-processed
to make sure there are no unique words, named entities and speech
transcriptions.

The test set of Clotho is reserved as the evaluation set for the
DCASE challenge. Audio clips in the development set are randomly
sampled to create a training set with 5719 audio samples and a val-
idation set with 200 audio samples. During training, each audio
clip is combined with one of its five captions as a training sample.
During evaluation, all five ground truth captions of an audio clip
are used as references and compared with the predicted caption for
metric computation.

3.1.2. AudioCaps

AudioCaps is the largest audio captioning dataset created based on
AudioSet, which contains around 46k audio samples with duration
less than 10 seconds. AudipCaps is divided into three splits, and
each audio clip in training set contains one caption, while five cap-
tions per audio clip are used in validation and test sets.

3.2. Data pre-processing

64-dimensional log mel-spectrograms using a 1024-points Hanning
window with a hop size of 512-points is used as input features. All
captions in the dataset are transformed to lower case with punctu-
ation removed. Two special tokens “<sos>" and “<eos>" are
used to pad the caption. For the Clotho dataset, the vocabulary con-
tains 4367 words. For transfer learning from AudioCaps to Clotho,
these 2 vocabularies are merged together which gives a vocabulary
containing 6636 words.

3.3. Experimental setups

The whole model is trained using the Adam optimizer [15] with a
batch size of 32. Warm-up is used in the first 5 epochs for the learn-
ing rate linearly increased to 0.001. The learning rate is decreased
to 1/10 of itself every 10 epochs after the warm-up. Dropout with
rate of 0.2 is applied in the proposed model to mitigate over-fitting
problems. To improve the generalization ability of the model, label
smoothing is applied in all the experiments [16]. SpecAugment is
used with two different making types, “zero-value masking” and
“mini-batch based mixture masking” introduced in [17]. Word em-
beddings are pre-trained by a Word2Vec model using all captions in
Clotho and AudioCaps [18].

The model is first trained for 30 epochs, and the model that
performs best on the validation set is selected. Then, reinforcement
learning is used to optimize the CIDEr score for 25 epochs with a
learning rate of 1e-4. During the inference stage, a beam search with
a beam size of 3 is used to improve the decoding performance.

4. RESULTS

The challenge allows us to submit up to four different models. Our
submission contains the following four models:

e PANNSs-ZR: This model is trained only on Clotho using PANNs
as encoder. The mask type of SpecAugment is “zero value
masking”. Word embeddings are random initialized.

o PANNs-MR: This model uses “mini-batch based mixture mask-
ing” as make type of SpecAugment and all other settings are
same as in the first model.

e PANNSs-AC-ZW: This model is first pre-trained on AudioCaps
and then fine-tuned on Clotho. The pre-trained word embed-
dings are used in this model.

e PANNs-AC-ZR: This model is the same as PANNs-AC-ZW
except that word embeddings are randomly initialized.
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All the models are fine-tuned using reinforcement learning af-
ter the training is performed. The performances of our submitted
models are shown in Table 1.

5. CONCLUSION

This technical report briefly describes our system and methods for
Task 6 of DCASE 2021. Using transfer learning and reinforcement
learning, the proposed system significantly improves all evaluation
metrics compared to the top-ranked systems in the DCASE chal-
lenge last year.
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