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ABSTRACT

We propose a detection method for the anomalous sound detec-
tion task of DCASE2021 task2 in this report. This is the task of
anomalous sound detection for machine condition monitoring, and
it is required to detect unknown anomalous sound only from normal
sound data. We use the normal sound of the machine and its sec-
tion index to train the Convolutional Neural Network (CNN) in a
self-supervised learning manner. Then, we detect anomalous sound
by using feature vectors extracted from CNN. As a result, for the
development dataset we show the detection performance of 78.05%
in Area Under Curve (AUC) and 68.09% in partial AUC (pAUC).

Index Terms— Anomalous Sound Detection, Convolutional
Neural Network

1. INTRODUCTION

In DCASE2021task2 “Unsupervised Anomalous Sound Detec-
tion for Machine Condition Monitoring under Domain Shifted
Condition”[1], it is required to detect the anomalous sound of the
machine. Since we can only obtain the normal sound of a ma-
chine, anomalous sound detection is an unsupervised problem. In
DCASE2021 task, a new condition that the acoustic characteristics
of the training data and the test data are different(i.e., domain shift)
is newly added.

In DCASE2020 task2, we only used the conventional detection
methods, and we found that it was important to extract more effec-
tive features. Therefore, in DCASE2021 task2, we extract features
from the sound of the machine based on the Convolutional Neural
Network(CNN). Furthermore, we use conventional anomaly detec-
tion methods same as the last year.

This paper is organized as follows. In chapter 2, we describe
our anomalous sound detection method. In chapter 3, we show the
evaluation experiments and the results. In chapter 4, we summarize
this report. In chapter 5, we describe the model we are submitting.

2. ANOMALOUS SOUND DETECTION METHOD

2.1. Audio Processing

We transform all audio clip into spectrograms. The frame size for
STFT is 128 ms, and hop size is 32 ms. We set these parameters
experimentally. We use spectrograms as input for CNN.

∗Equal contribution.

2.2. Feature extractor using CNN

By using spectrograms and section indices, we train a CNN such as
MobileNetV2(MNv2)[2] and MobileFaceNet(MFN)[3]. Adition-
ally, we use Additive Angular Margin Loss [4] as a loss function. A
spectrogram of 1024 dimensions × 32 frames is used as a process-
ing unit, and the unit is shifted by 16 frames in the audio clip. Each
model structure is shown in Table 1 and 2. As a result, we obtain a
128 dimensions vector per an unit.

Table 1: MobileNetV2 Architecture
Input Operator t c n s

1024×32×1 conv2d 3×3 - 32 1 2
512×16×32 bottleneck 1 16 1 1
512×16×16 bottleneck 6 24 2 2
256×8×24 bottleneck 6 32 3 2
128×4×32 bottleneck 6 64 4 2
64×2×64 bottleneck 6 96 3 1
64×2×96 bottleneck 6 160 3 2
32×1×160 bottleneck 6 320 1 1
32×1×320 conv2d 1×1 - 1280 1 1

32×1×1280 Ave Pool 16×1 - - 1 -
1×1×1280 conv2d 1×1 - 128 -

Table 2: MobileFaceNet Architecture
Input Operator t c n s

1024×32×1 conv2d 3×3 - 64 1 2
512×16×64 depthwise conv2d 3×3 - 64 1 1
512×16×64 bottleneck 2 64 5 2
256×8×64 bottleneck 4 128 1 2
128×4×128 bottleneck 2 128 6 2
64×2×128 bottleneck 4 128 1 2
32×1×128 bottleneck 2 128 2 1
32×1×128 conv2d 1×1 - 512 1 1
32×1×512 linear GDConv16×1 - 512 1 1
1×1×512 linear conv2d 1×1 - 128 1 1

2.3. Anomaly Detector

We apply Local Outlier Factor(LOF) for source domain and k-
Nearest Neighbors(k-NN) for target domain. We merge embedding
vectors in an audio clip using mean or standard deviation.



Detection and Classification of Acoustic Scenes and Events 2021 Challenge

Local Outlier Factor(LOF)[5]

This method is based on local density, which is the density of k-
neighboring feature values. When a feature is anomalous, the dif-
ference is large between the local density of the anomaly and the
neighboring feature. In this report, we use the outputs of LOF as
the anomaly score. We set the number of neighbors to 4.

k-Nearest Neighbors(k-NN)[6]

This method is based on the distance of k-neighboring features. In
k-NN, the larger the distance to the selected neighborhood, the more
deviated from normal. In this report, we use the mean of cosine
distance as the anomaly score, and we set the number of neighbors
to 1.

3. EVALUATION EXPERIMENTS

3.1. Experimental Condition

10-sec length audio (monaural, 16 kHz) was sampled from ma-
chinery sound sources. There are seven types of machines (Ma-
chine Type); ToyCar, ToyTrain[7], fan, gearbox, pump, slider and
valve[8]. For each Machine Type, there are 3 sections in develop-
ment dataset and 3 sections in additional dataset. We trained a CNN
using 6 sections datasets in a Machine Type, and an anomaly detec-
tor using embedding vectors per section. We used librosa[9] and
scikit-learn[10] for the implementation. When we evaluated sound
clips in the source domain, we only used training data in the source
domain, and when in the target domain, we used training data in the
source domain and target domain.

In the experiment, we compared the following:

• Feature extractor model: MobileNetV2, MobileFaceNet
• Anomaly detector model: LOF, k-NN
• Feature merge method: mean, standard deviation(std)

3.2. Results

The results are shown in Table 3, Table 4, Table 5, and Table 6.
Table 3 and Table 4 show the results for source domain and Table
5 and Table 6 for target domain. Each value is a harmonic mean of
AUC or pAUC overall sections.

4. CONCLUSION

In this paper, we used the normal sound of the machine and its sec-
tion index to train the CNN in a self-supervised learning manner.
Then, we detect anomalous sound by using feature vectors extracted
from CNN. The performance of 78.05% for AUC and 68.09% for
pAUC was shown for the development dataset.

5. SUBMISSIONS

In this report, we submit three anomalous sound detection systems.
Table 7 shows the conditions we used.
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Table 3: Harmonic Mean of AUC in the source domain of Development Dataset(%)
CNN Detector merge ToyCar ToyTrain fan gearbox pump slider valve total

baseline(MNv2) 55.80 67.89 61.02 70.21 65.48 72.67 55.95 63.53
MNv2 LOF mean 72.68 63.48 82.18 78.31 75.46 82.02 74.31 74.99

std 62.11 60.64 69.09 63.88 59.10 76.47 88.67 67.31
k-NN mean 75.59 67.95 83.61 79.39 77.99 89.65 75.43 78.01

std 54.64 63.49 71.68 66.20 61.55 79.48 93.38 68.20
MFN LOF mean 91.06 86.13 90.36 77.76 82.52 90.83 75.37 84.42

std 81.55 76.10 54.51 53.92 53.93 70.56 91.32 66.06
k-NN mean 89.37 81.50 85.59 79.52 83.37 91.97 71.31 82.73

std 75.53 73.36 51.69 53.76 53.53 72.43 95.87 64.97
Our best 91.06 86.13 90.36 77.76 82.52 90.83 95.87 87.42

Table 4: Harmonic Mean of AUC in the target domain of Development Dataset(%)
CNN Detector merge ToyCar ToyTrain fan gearbox pump slider valve total

baseline(MNv2) 57.42 50.18 62.35 64.35 59.08 51.21 57.25 56.98
MNv2 LOF mean 64.48 53.77 64.12 77.88 62.15 67.22 67.22 64.58

std 59.65 53.50 62.41 59.07 59.53 60.07 73.46 60.63
k-NN mean 66.64 53.62 64.76 80.78 62.58 63.54 67.39 64.80

std 54.82 56.67 66.08 64.24 60.84 58.95 78.30 62.08
MFN LOF mean 60.27 51.68 73.28 81.37 75.86 53.64 63.44 63.94

std 61.94 46.37 53.67 47.09 49.09 49.33 65.92 52.48
k-NN mean 70.54 54.08 72.67 84.80 74.39 67.07 63.10 68.34

std 61.62 42.55 53.85 47.96 47.55 49.49 78.67 52.59
Our best 70.54 54.08 72.67 84.80 74.39 67.07 78.67 70.50

Table 5: Harmonic Mean of partial AUC in the source domain of Development Dataset(%)
CNN Detector merge ToyCar ToyTrain fan gearbox pump slider valve total

baseline(MNv2) 58.64 51.87 65.79 61.45 59.24 59.50 52.17 58.01
MNv2 LOF mean 60.12 57.23 75.39 64.94 64.26 74.41 62.82 65.00

std 55.23 55.44 64.50 53.99 52.10 62.51 79.35 59.34
k-NN mean 63.48 57.64 75.80 64.67 65.34 78.68 64.07 66.43

std 53.85 54.17 67.70 54.27 54.40 71.31 82.70 61.02
MFN LOF mean 78.25 65.36 79.66 67.67 66.50 83.05 59.41 70.48

std 63.27 58.72 50.91 51.07 51.93 58.35 79.19 57.81
k-NN mean 74.76 58.65 70.11 67.43 68.74 82.59 58.03 67.69

std 61.03 54.98 50.74 50.70 52.47 58.05 84.78 57.33
Our best 78.25 65.36 79.66 67.67 66.50 83.05 84.78 74.24

Table 6: Harmonic Mean of partial AUC in the target domain of Development Dataset(%)
CNN Detector merge ToyCar ToyTrain fan gearbox pump slider valve total

baseline(MNv2) 54.44 51.38 60.84 57.48 55.73 53.17 53.23 55.03
MNv2 LOF mean 56.12 51.21 67.55 66.33 57.41 59.25 55.90 58.62

std 53.94 50.39 58.04 52.05 53.43 54.99 60.50 54.58
k-NN mean 57.74 51.35 67.82 65.57 58.06 58.98 56.13 58.93

std 52.39 51.22 64.82 52.67 54.19 56.80 64.41 56.18
MFN LOF mean 56.91 52.45 64.81 69.04 62.38 50.55 57.13 58.40

std 52.64 48.64 49.32 49.22 51.41 51.97 56.80 51.30
k-NN mean 59.92 53.10 66.67 72.49 65.42 62.01 57.28 61.84

std 52.50 48.66 49.35 49.40 51.48 52.13 64.12 52.12
Our best 59.92 53.10 66.67 72.49 65.42 62.01 64.12 62.88

Table 7: Submission of our System
Anomaly detector

Model name Feature extractor Source domain Target domain Merge Method
Morita SECOM task2 1 LOF LOF
Morita SECOM task2 2 MFN k-NN k-NN std(valve), mean(otherwise)
Morita SECOM task2 3 k-NN(valve), LOF(otherwise) k-NN


