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ABSTRACT

This paper is a technical report of DCASE Challenge2021 Task2.
The objective of the DCASE Challenge2021 Task2 is unsupervised
anomalous sound detection under domain shift. Our method con-
sists of feature extraction using a pre-trained model and Center-
Loss VAE (CL-VAE) based on Center-Loss and Variational Auto-
Encoder (VAE). In feature extraction with pre-trained models,
ResNet38 trained on acoustic data is used as a feature extractor to
obtain intermediate representations. The CL-VAE is trained with
the intermediate representations as input and is trained to minimize
the Center-Loss of the section labels and the loss function of the
VAE. As a result of validation on the development dataset, we con-
firmed that the performance of CL-VAE is superior to that of Con-
ditional VAE (CVAE) using baseline models and section labels.

Index Terms— Transfer learning, deep metric leaning, center-
loss, variational auto-encoder

1. INTRODUCTION

Anomalous sound detection is a technique to determine whether a
machine is normal or anomalous based on its sound. It is difficult
to identify a failure from the outside of a machine with a complex
internal structure. However, if we can detect anomalous sounds
emitted by a machine, we can quickly detect a failure. In the past,
the DCASE Challenge2020 Task2 was held as a competition for
anomalous sound detection [1]. The Challenge was a very difficult
task that required the classification of normal or anomalous from
only normal sound data with various sounds. Various methods for
detecting anomalous sounds, including the Outlier Exposure (OE)
approach, have been developed, and research on anomalous sound
detection has made significant progress [2] [3]. The objective of
this year’s DCASE Challenge2021 Task2 is unsupervised anoma-
lous sound detection under domain shift [4]. As in Challenge 2020,
participants are only allowed to use normal data for training. In
addition, each section has a Source / Target domain shift1, and the
model needs to be created using only the Source data and a small
amount of Target data. Our proposed method consists of feature
extraction based on [5] and CL-VAE to capture the section distri-
bution. In [5], the representation in the pre-trained model of normal
data is modeled by multivariate normal distribution (MVG), and the

1e.g., factory noise variations between domains

Mahalanobis distance from MVG is used for anomaly detection.
However, in the Challenge2021 Task2 dataset, it was not easy to de-
tect anomalies from a single MVG because the data distribution was
assumed to be different between sections and domains. Therefore,
we propose a VAE that introduces center-loss to capture the dis-
tribution of each section label. Our method improves the anomaly
detection performance by learning to form clusters for each section
label in the output layer of the encoder.

2. PROPOSED METHOD

2.1. Feature Extraction

We applied the same extraction method as [5]. While the authors
in [5] utilized the architecture of EfficientNet [6] as feature extrac-
tor, we applied PANNs ResNet38 [7] architecture . The weight pa-
rameters of the network are provided as pre-trained model.

In the feature extraction, the output of each convolutional layer
is treated as a feature vector. The shape of the output from each
convolutional layer is (N,C,H,W )2, and the values are averaged
over H and W to take representative values for each channel.

(N,C, average(H ×W )) = (N,C) (1)

These feature vectors are concatenated over convolutional layers
and we can obtain the final feature vector with shape (N, d). The
dimension d is calculated as follows:

d =

n∑
i=1

Ci, (2)

where n is the number of convolutional layers, Ci is the number of
channels in i-th convolutional layer. To reduce the dimensionality d,
we used the output from BasicBlock3 to create a d = 3776 feature
vector.

2.2. Center-Loss Variational Auto-Encoder

As shown in Figure 1, the architecture of CL-VAE has a typical
VAE structure. The difference between them is that center-loss [8]

2N : Samples, C : Channel, H : Height, W : Width
3(Conv2D, BatchNorm2D, ReLU)×2
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Figure 1: Architecture of CL-VAE

is calculated in encoder output. The center-loss LC , a loss function,
can be written as follows:

LC =
1

2

m∑
i=1

∥xi − cyi∥
2
2, (3)

where i is the class label and m is the number of sections. The LC

can be utilized to minimize the distance between the center cyi of
class yi and feature vector xi.

In addition, the center cyi is updated based on the following
equation for each mini-batch.

∆cj =

∑m
i=1 δ(yi = j) · (cj − xi)

1 +
∑m

i=1 δ(yi = j)
(4)

ct+1
j = ctj − α ·∆ctj (5)

where j is the class label in the mini-batch, cj is the center of each
class for each mini-batch, and α is a hyperparameter. δ is a function
that is set to 1 when a label is matched.

The loss function of CL-VAE can be obtained with the re-
construction loss Lrec, Kullback-Leibler regularizer Lkld, and the
center-loss LC .

Lrec =
1

N

N∑
i=1

(xi − x̂i)
2 (6)

Lkld = −1

2

N∑
i=1

(1 + log(σi)− µ2
i − σ2

i ) (7)

Lclvae = Lrec + Lkld + λLC (8)

where xi is the input of i-th mini-batch, x̂i is the corresponding
reconstruction, and N is the size of mini-batch. µ and σ are the
parameters of the Gaussian distribution assumed in the VAE. λ is a
hyperparameter for the center-loss weight.

The following two combinations were applied for anomaly
scores, and the parameters of CL-VAE is shown in Table 1.

Lrec + Lkld (9)

Lrec + Lkld + λLC (10)

Table 1: Parameters of CL-VAE
Architecture

Encoder

Input(3776)
FCBlock(1024) ×3
FCBlock(512)
Reparameterization(512), CenterLossLayer(6)

Decoder
FCBlock(512)
FCBlock(1024)×3
FCBlock(3776) (activation : ReLU)

FCBlock : Linear, Batchnorm, ReLU
center-loss λ : 150
center-loss α : 1

2.3. Preprocessing

When inputting the data into the feature extractor described in Sec-
tion 2.1, we set the parameters to match those of PANNs ResNet38
as shown in Table 2 and generated a log mel-spectrogram. In addi-
tion, the audio file in the dataset had a sampling rate of 16k, so we
resampled it to 32k to fit the pre-trained model.

Table 2: Parameters of preprocessing
Parameter Value
sample rate 32000
window size 1024

hop size 320
mel bins 64

fmin 50
fmax 14000

2.4. Postprocessing

For the anomaly detection threshold, the anomaly score of the nor-
mal data for each machine type was fitted with a gamma distribu-
tion as in the baseline system, and the 90th percentile was set as the
anomaly.

3. DATASET

The DCASE Challenge2021 Task2 dataset consists of the MIMII
DUE [9] and ToyADMOS2 [10] datasets, which have seven ma-
chine types. In addition, each machine type has five different la-
bels, called ”sections”, and each section has a corresponding do-
main shift.

• ToyCar (ToyADMOS2)

• ToyTrain (ToyADMOS2)

• Fan (MIMII DUE)

• Gearbox (MIMII DUE)

• Pump (MIMII DUE)

• Slide rail (MIMII DUE)

• Valve (MIMII DUE)
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4. RESULTS

We have submitted the following two systems as our submissions.
The detailed scores are shown with reference to the organizer’s
overview paper [11]. The performance of the autoencoder-based
anomaly detection system from [11] is referenced and shown in Ta-
ble 3. The performance of CVAE, which was not used in the sub-
mission but used section labels for comparison, is shown in Table
4. This CVAE used the same input features as the CL-VAE.

• System 1 (Narita AIT task2 1)

– Performance is shown in Table 5
– Results predicted by Eq.(9).

• System 2 (Narita AIT task2 2)

– Performance is shown in Table 6
– Ensemble of Eq.(9) and Eq.(10). However, we multi-

plied Eq. (10) by 0.01 to adjust the scale.
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Table 3: Results of the AE-based baseline (Official Score)

Section
AUC [%] pAUC [%]

Source Target Source Target

To
yC

ar

D
ev

. 00 67.63 54.50 51.87 50.52

01 61.97 64.12 51.82 52.14

02 74.36 56.57 55.56 52.61

To
yT

ra
in

D
ev

. 00 72.67 56.07 69.38 50.62

01 72.65 51.13 62.52 48.60

02 69.91 55.57 47.48 50.79

Fa
n

D
ev

. 00 66.69 69.70 57.08 55.13

01 67.43 49.99 50.72 48.49

02 64.21 66.19 53.12 56.93

G
ea

rb
ox

D
ev

. 00 56.03 74.29 51.59 55.67

01 72.77 72.12 52.30 51.78

02 58.96 66.41 51.82 53.66

Pu
m

p

D
ev

. 00 67.48 58.01 61.83 51.53

01 82.38 47.35 58.29 49.65

02 63.93 62.78 55.44 51.67

Sl
id

e
ra

il

D
ev

. 00 74.09 67.22 52.45 57.32

01 82.16 66.94 60.29 53.08

02 78.34 46.20 65.16 50.10

V
al

ve

D
ev

. 00 50.34 47.12 50.82 48.68

01 53.52 56.39 49.33 53.88

02 59.91 55.16 51.96 48.97

MEAN 67.49 59.23 55.28 51.99

Table 4: Results of the CVAE

Section
AUC [%] pAUC [%]

Source Target Source Target

To
yC

ar

D
ev

. 00 72.18 69.87 54.58 55.68

01 55.80 78.81 48.47 51.95

02 79.31 67.90 60.58 59.21

To
yT

ra
in

D
ev

. 00 70.66 53.78 57.00 52.42

01 59.91 56.47 57.16 53.11

02 56.61 59.37 48.26 58.58

Fa
n

D
ev

. 00 62.33 67.92 55.89 51.53

01 54.35 46.09 49.74 48.89

02 48.90 44.91 50.21 50.05

G
ea

rb
ox

D
ev

. 00 61.52 84.65 60.66 76.62

01 89.62 92.84 80.10 84.03

02 71.54 72.63 60.36 60.13

Pu
m

p

D
ev

. 00 66.91 41.98 63.47 49.05

01 45.93 43.22 49.05 48.58

02 63.86 57.35 60.11 51.53

Sl
id

e
ra

il

D
ev

. 00 54.00 57.33 50.37 55.21

01 68.12 41.22 64.47 47.79

02 62.39 61.59 55.34 50.89

V
al

ve

D
ev

. 00 53.24 48.45 52.84 50.16

01 47.43 67.56 49.84 61.63

02 57.19 49.94 52.58 49.79

MEAN 61.78 58.69 56.74 55.75

Table 5: Results of CL-VAE (System 1)

Section
AUC [%] pAUC [%]

Source Target Source Target

To
yC

ar

D
ev

. 00 73.89 79.72 67.47 68.16

01 76.84 93.54 60.47 82.16

02 86.16 81.70 64.89 69.95

To
yT

ra
in

D
ev

. 00 68.72 67.79 61.95 58.32

01 72.42 69.02 70.00 60.58

02 82.75 82.63 51.47 74.00

Fa
n

D
ev

. 00 67.56 71.75 60.05 61.58

01 78.87 64.77 71.21 54.32

02 63.06 58.28 54.16 54.32

G
ea

rb
ox

D
ev

. 00 67.20 91.10 61.72 83.11

01 96.26 94.67 87.57 84.57

02 78.10 80.04 70.36 68.67

Pu
m

p

D
ev

. 00 71.41 62.17 59.32 57.63

01 90.58 71.50 75.95 57.63

02 70.04 55.97 63.47 53.74

Sl
id

e
ra

il

D
ev

. 00 79.77 66.36 61.89 53.89

01 93.46 68.92 80.89 61.57

02 77.09 52.93 68.34 49.97

V
al

ve

D
ev

. 00 77.99 66.15 63.37 63.63

01 72.49 75.31 63.74 69.68

02 80.45 46.14 72.00 49.79

MEAN 77.39 71.45 66.20 63.68

Table 6: Results of CL-VAE ensemble (System 2)

Section
AUC [%] pAUC [%]

Source Target Source Target

To
yC

ar

D
ev

. 00 75.46 79.80 68.21 68.42

01 82.18 94.31 66.32 85.21

02 87.87 82.28 70.53 72.84

To
yT

ra
in

D
ev

. 00 71.48 65.25 62.74 53.84

01 74.44 68.88 70.89 61.32

02 83.23 82.24 48.05 74.05

Fa
n

D
ev

. 00 65.55 70.59 59.89 61.37

01 80.13 68.42 73.21 54.74

02 74.46 57.78 66.11 54.74

G
ea

rb
ox

D
ev

. 00 76.82 94.27 66.40 86.24

01 96.48 95.86 89.93 87.15

02 81.35 81.25 67.55 70.01

Pu
m

p

D
ev

. 00 72.46 71.17 62.05 61.95

01 93.43 74.17 79.89 62.63

02 73.66 59.34 60.11 55.79

Sl
id

e
ra

il

D
ev

. 00 80.94 61.02 63.05 55.00

01 93.91 69.51 78.84 63.42

02 81.94 63.59 76.64 54.61

V
al

ve

D
ev

. 00 78.85 66.73 63.00 64.47

01 76.07 84.84 66.26 75.00

02 82.22 51.50 72.11 50.63

MEAN 80.14 73.47 68.18 65.40


