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Abstract

This report describes a sound event detection method submit-
ted to the DCASE2021 challenge, task 4. In this approach,
we design a residual convolutional recurrent neural network
and train this network with a cross-referencing self-training ap-
proach that leverages an extensive unlabeled data in combi-
nation with labeled data. This approach takes advantage of
semi-supervised training using pseudo-labels from a balanced
student-teacher model, and outperforms DCASE2021 challenge
baseline in terms of Poly-phonic Sound event Detection Score.
Additionally, the proposed network has more accurate predic-
tions in class-wise collar-based-F1, compared to the baseline.

Index Terms: self-training, few-shot learning, sound event de-
tection, multi-target detection

1. Introduction

This report describes a Sound Event Detection (SED) system
which is submitted to the task 4 for Detection and Classification
of Acoustic Scenes and Events (DCASE) 2021 challenge. The
goal of SED is to identify sounds of interests in an audio clip
as sound class and time boundaries as well. Its applications in-
clude audio surveillance [1, 2] in various location such as smart
home and cities [3], health monitoring, life logging and mul-
timedia retrieval. Since DCASE 2017, SED task has featured
as task 4 that deals with weakly labeled data. In task 4 of this
challenge, 10-domestic sound events are considered as the tar-
get events such Alarm/bell/ringing, Blender, Cat, Dishes, Dog,
Electric shaver/tooth brush, Frying, Running water, Speech, and
Vacuum cleaner. And a question has been introduced: How to
apply weakly labeled and/or unlabeled data in combination with
synthesized strong labeled data in network training?

We propose a Cross-Referencing Self-Training (CRST) ap-
proach that leverages weakly labeled and unlabeled data in su-
pervised fashion [4]. In case of the challenge baseline, a Mean
Teacher (MT) approach is used to train the network [5, 6]. The
MT approach is composed of student and teacher networks.
For the student network, the parameters are optimized by us-
ing gradient descent method. On the other hand teacher pa-
rameters are updated by moving average of student parameters
over the training. In the proposed method, we incorporate two
model as depicted in Fig. 1 (Model I and Model II) which esti-
mate pseudo labels by themselves and pass the estimate to the
other model. In parallel, Model II is trained on different version
of data produced by a transformation function T (.). By inde-
pendently training these two models, the proposed framework
resolves issues of self-biasing that arise from self-referencing
schemes [7].

Figure 1: Block diagrams of cross-referencing self-training.

2. Method
The proposed approach extends the baseline system for this
challenge [8] by incorporating modifications in network archi-
tecture and using a semi-supervised learning strategy, as de-
tailed next. All other components of system design and train-
ing are similar to the baseline implementation: batch size (48),
batch composition of strong labeled data (12), weakly labeled
data (12), and unlabeled data (24), learning rate(0.001 for maxi-
mum), exponential ramp-up function, validation threshold (0.5),
data augmentation based on soft-mixup with a 50 % change, and
min-max normalization for network input.

2.1. Pre-processing

Each audio clip is resampled to a 16kHz mono-channel audio
waveform and it is converted to a spectrogram by performing
Short Time Fourier Transform (STFT) with 2048-points frame
length and 255-points hop size. Then, a log-Mel spectrogram
is obtained by performing frequency integration with 128 Mel-
filters spanned 0 to 8kHz frequency domain and logarithm func-
tion. Note that audio length is set to 10 second with zero-
padding or cutting for shorter or longer audios than 10 second,
respectively.

2.2. Network architecture

Inspired by a Residual Convolutional Recurrent Neural Net-
work (RCRNN) proposed in [9], the proposed network archi-
tecture is designed with residual convolutional layer. As shown
in Fig. 2, the network is composed of two parts: Convolutional
Neural Network (CNN) and Bidirectional Gate Recurrent Unit
(BGRU). In the CNN section, stem-block consists of convolu-
tional layer (Conv) with 3×3 kernel, 1×1 stride, Batch Normal-
ization (BN), Gate Linear Unit (GLU), and 2D Average pooling
(AvgPool) along to time-frequency axes. The residual convolu-
tion block (R-Conv) consists of one convolutional layer for skip
connection and two convolutional layers, BN, and ReLU acti-
vation as in Fig. 3. Note that all convolutional layers in R-Conv
use 3×3 kernel and 1×1 stride. Then, the Convolutional Block
Attention Module (CBAM) proposed in [10] and AvgPool along



Figure 2: Block diagrams for network architecture. (a) Con-
volutional Recurrent Neural Network (CRNN) used in baseline,
(b) Residual CRNN

Figure 3: Block description for R-Conv

to frequency axis only are followed by each R-Conv.

2.3. Cross-Referencing Self-Training

To leverage both weakly labeled data and unlabeled data in su-
pervised learning, a Cross-Referencing Self-Training (CRST)
approach is applied for network training [4]. In this work, the
student and teacher in both models are designed by using the
RCRNN network, and both have the same architecture to each
other. The objective function to train each model is defined as
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where Li is the objective function for training Model i whose
prediction is denoted as fi(.). x′ is produced by performing
frame shifting on original log-Mel spectrogram xwith a random
delay factor generated by Gaussian distribution G(0, 40). E[.]
is an averaging operator over the frames. yw and ys are labels
for weak labeled data and strong labeled data, respectively. γs

i

and γw
i are the reliability of pseudo label estimated in Model i

with strong labeled data and weakly labeled data, respectively.
With an assumption that teacher prediction represents a

posterior probability of each target class, the pseudo label is

estimated to a probabilistic expectation of potential labels as

ỹ = ΣK
k ΣNk

n pkn l
k
n, (2)

where k is the number of concurrent events in each frame and
n is an index for the case of choosing k-sounds of total target
sounds. lkn is a potential label vector expressed by a summation
of delta functions like l2n:{i,j} = δi + δj for events i and j
((k = 2). pkn is a probability of the label lkn. With Bernoulli
process, the probability is calculated by multiplying posterior
for potential sound class and complementary for others. For the
case of a potential label l2n:i,j , as an instance, the probability
is p2n:{i,j} = 1

N
ŷ′iŷ

′
jΠq 6=i,j (1 − ŷ′q). Note that ŷ′ is teacher

prediction. K is maximum number of concurrent events, and
Nk = C!/(k! × (C − k)!) is the number of potential labels
under the k and total number of target sound classes C. In this
work, the K is set to 3 due to the mixup with a 50% chance for
data augmentation.

The reliability of pseudo label is designed with Jensen
Shannon Divergence (JSD), which is bounded in [0,1].
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where ω = 3.0exp(−5(1− t/T )2),

JSD(a||b) = KLD(a||m)/2 +KLD(b||m)/2,

m = (a+ b)/2,

(3)

where γs and γw is reliability with respect to strong labeled and
weakly labeled data, respectively. ω is a ramp-up parameter
with an index of training step t and maximum number of the
steps T , Ns and Nw is the number of strong labeled data and
weakly labeled data, respectively. KLD is a Kullback Leibler
Divergence. Note that a ramp-up function for ω is same with a
function used in baseline.

While both Model I and Model II are separately optimized
in the training phase, predictions during the validation and test
phases are produced by averaging two outputs from each stu-
dent and teacher network.

2.4. Post-processing

Imbalance in the number of training data for each target class
introduces a bias toward a dominant class. This framework is
not free from this issue because the network is trained on real
recordings. However, it is hard to use one of methods such as
dynamic sampling [11] or data augmentation [12] for minority
class data since those methods need class label for all training
data. Instead, class-wise parameters of threshold and smooth-
ing are used in post-processing. With weakly labeled data, we
collect samples for network prediction of each class, and we ap-
plied Extreme Value Theory (EVT) to the samples to estimate
threshold. For smoothing length, we calculated average length
of sound duration for each target class, then a 25% of the av-
erage is decided to the smoothing length (for more detail about
post-processing, please find [4]).

3. Experiment
3.1. Database

Domestic Environment Sound Event Detection (DESED)
database is used for evaluation. The database has three types



Table 1: Performance comparison with global post-processing

PSDS1 PSDS2 Intersection based F1 Collar-based F1

MT (baseline) Student 0.3400 0.5346 0.7635 0.4009
w/CRNN Teacher 0.3424 0.5381 0.7753 0.4200
MT Student 0.2700 0.5036 0.8130 0.3923
w/RCRNN Teacher 0.2613 0.5083 0.8263 0.4072
CRST Student 0.3305 0.5304 0.6912 0.3842
w/CRNN Teacher 0.3381 0.5327 0.6907 0.3814
CRST Student 0.3406 0.6323 0.7445 0.3825
w/RCRNN Teacher 0.3600 0.6421 0.7758 0.4284

Table 2: Effect of classwise post-processing in CRST w/ RCRNN

PSDS1 PSDS2 Intersection based F1 Collar-based F1

global Student 0.3406 0.6323 0.7445 0.3825
thresholding & smoothing Teacher 0.3600 0.6421 0.7758 0.4284
global thresholding & Student1 0.5082 0.6684 0.7572 0.4131
classwise smoothing Teacher2 0.5237 0.6737 0.7740 0.4389
classwise Student3 0.4564 0.5957 0.5864 0.4289
thresholding & smoothing Teacher4 0.4464 0.5609 0.7737 0.4558

* Superscription indicates submission ID

of training dataset: strong labeled, weakly labeled, and unla-
beled dataset [13]. The strong labeled data let us know sound
class and timestamps for each target sound interval. For weakly
labeled data, the label let us know sound class only while un-
labeled data has no information about the truth. The weakly
labeled and the unlabeled dataset contain 1,578 and 14,412 au-
dio clips, respectively. We generate about 10,000 audio clips
by using the Scaper soundscape library for synthesis and aug-
mentation [14], and SINS database and TUT Acoustic scenes
2017 database for background sounds. The validation dataset,
including 1,168 audio clips, is taken from the DESED dataset
for evaluation.

3.2. Result

A Poly-phonic Sound event Detection Scores (PSDS) [PSDS]
is evaluated in two different scenarios: 1) The system needs
to react fast upon an event detection. For this case, PSDS1 is
sensitive to time accuracy. 2) The system has to avoid confusing
between classes but reaction time is less crucial than in the first
scenario. For this scenario, PSDS2 is calculated. To calculate
PSDS metric, 0.01 to 0.99 with 0.02 step are used as a threshold
for all targets. Additionally, intersection- and collar- based F1
measures are used as contrastive metric. In a collar based F1
measure, 200 ms and 200 ms / 20% of the event length is applied
for a collar on onsets and offsets, respectively. Note that 0.5 and
about 450 ms are applied to all target classes as a threshold and
smoothing length, respectively.

Table 1 shows the results of Student and Teacher net-
works in baseline and CRST. In PSDS results, the CRST (with
RCRNN) shows an improvement in the second scenario while
its time accuracy is comparable to the baseline. Particularly,
teacher network shows better than student network. It is consis-
tent with the idea of using averaging model which tends to pro-
duce more accurate predictions. On the other hand, the effec-
tiveness of RCRNN architecture is inconsistent depending on
semi-supervised learning method. CRST approach is more ef-

fective on RCRNN structure while MT approach prefers CRNN
structure to improve the performance. It is remained to explore
the best network architecture as a future work,

Table 2 shows the effect of classwise post-processing in the
RCRNN based CRST. To calculate PSDS metric for classwise
thresholding, 1% to 99 % with 2% step of classwise threshold
estimated based on EVT are used. In PSDS results, ”global
thresholding & classwise smoothing” shows the best among
three cases. Especially, classwise smoothing improves time ac-
curacy compared to other two cases in PSDS1 metric. In collar-
based F1 results, ”classwise thresholding & smoothing” shows
the best among them. Table 3 shows the collar-based F1 metric
in each target class. According to the result, the CRST has an
issue to detect Dishes sound. In case of Dishes, its duration is
relatively too short and its frequency is not much. Due to this
imbalance, the model has seen non-dishes sounds much more
than dishes sounds. This limitation can be resolved by perform-
ing classwise thresholding and smoothing.

4. Summary

In this report, we explored semi-supervised learning approach
that leverages unlabeled data in supervised training, and applied
a cross-referencing self-training approach to network training
for the sound event detection task of DCASE2021 challenge.
For this challenge, we built two models Model I and Model II,
where each model estimates pseudo labels by itself and passes
the estimate to the other model, with an expectation that re-
solves the self-biasing issue in a self-referencing framework.
The effectiveness of this approach was demonstrated in experi-
ments. In evaluation with PSDS metric, our best model achieves
0.5237 and 0.6737 for PSDS1 and PSDS2, respectively on the
validation set (1,168 real audio clips). Additionally, ”class-
wise thresholding and smoothing” further improved in evalu-
ation with collar-based F1 metric.



Table 3: Classwise collar-based F1 measure

Baselinew/CRNN CRSTw/RCRNN

post-processing global global classwise smoothing classwise
network student teacher student teacher student teacher student teacher

Alarm 0.422 0.430 0.262 0.433 0.259 0.432 0.320 0.455
Blend 0.433 0.430 0.465 0.480 0.497 0.480 0.448 0.439
Cat 0.417 0.454 0.324 0.360 0.352 0.406 0.318 0.358
Dish 0.236 0.248 0.109 0.134 0.181 0.112 0.316 0.313
Dog 0.208 0.228 0.201 0.217 0.213 0.267 0.226 0.257
Elec 0.515 0.538 0.528 0.640 0.571 0.607 0.609 0.600
Fry 0.392 0.362 0.497 0.543 0.515 0.495 0.506 0.525
R.W. 0.362 0.379 0.345 0.382 0.354 0.381 0.361 0.364
Speech 0.511 0.527 0.547 0.546 0.606 0.637 0.615 0.626
V.C. 0.512 0.604 0.547 0.549 0.583 0.573 0.571 0.620
Avg 0.4009 0.4200 0.3825 0.4284 0.4131 0.4389 0.4289 0.4558
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