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ABSTRACT

This technical report describes the system submitted to DCASE
2021 Task 3: Sound Event Localization and Detection (SELD) with
Directional Interference. The goal of Task 3 is to classify poly-
phonic events with temporal activity into a given class and detect
their direction in the presence of hidden sound events. Our system
uses a Transformer that utilizes the self-attention mechanism that
is now successfully used in many fields. We propose an architec-
ture called Many-to-Many Audio Spectrogram Transformer (M2M-
AST) that uses a pure Transformer to reduce the dependency of
CNNs and easily change the output resolution. Using the archi-
tecture for Sound Event Detection (SED) and Direction of Arrival
Estimation (DOAE), which are small sub-problems that consist of
SELD, we show that our system outperforms the baseline system.

Index Terms— Sound event localization and detection, self-
attention, Transformer, transfer learning, pre-training

1. INTRODUCTION

Convolutional neural networks (CNNs) have become essential for
designing deep neural networks for image understanding tasks. The
translation equal variance and locality of CNNs are known to be
effective for image understanding. Due to the success of CNNs in
image understanding, CNNs have also been used in other pattern
recognition fields [1, 2]. Since then, CNNs have been widely ap-
plied with excellent performance in various applications. CNNs are
also widely used for audio understanding. However, in the field
of audio understanding, Convolutional recurrent network (CRNN)
[3, 4] that uses both CNNs and recurrent neural networks (RNNs)
at the same time is mainly used to reflect long-term context as well
as local information.

Self-attention mechanisms [5], especially Transformers, have
become a new standard for natural language processing (NLP) [6].
In the field of NLP, a huge pre-trained model trained on large text
corpus dataset has been released. There is a generality in this model,
and this generality can be easily adapted by fine-tuning the model
in small tasks. The success of self-attention in the field of NLP has
led to attempts to add additional attention mechanisms to CNNs in
many areas that have previously used CNNs.

Recently, Vision Transformer (ViT) [7, 8] using only pure
Transformers for image understanding has been introduced. The
outstanding performance of ViT is starting to ask whether CNNs
are still essential in many applications. Since then, research on
Transformers replacing CNNss has become a trend in various fields.
The Audio Spectrogram Transformer (AST) [9] and Keyword Trans-
former [10] have been introduced as the first attempts to replace
CNNs with Transformers in audio understanding. These studies

demonstrate the potential of a pure Transformer to lower the depen-
dence of CNNs in audio understanding. Inspired by the strength of
the simple Transformer model in computer vision and audio clas-
sification, we propose an adaptation of this architecture to sound
event localization and detection (SELD)[11].

SELD is the task of classifying polyphonic events with tem-
poral activity into a given class and detecting their direction of ar-
rival. Therefore, SELD can be separated into two smaller tasks:
sound event detection (SED) and direction of arrival estimation
(DOAE). DCASE 2021 Task 3 targets the TAU-NIGENS Spatial
Sound Events 2021 dataset [12]. Unlike the TAU-NIGENS Spatial
Sound Events 2020 [13], up to three target sound events can occur
simultaneously, with an unknown spatial sound event in the back-
ground.

We propose a pure Transformer architecture, the Many-to-Many
Audio Spectrogram Transformer (M2M-AST). M2M-AST can effi-
ciently use large networks by fine-tuning huge pre-trained models.
AST performs one audio classification output for single-channel au-
dio input (one-to-one). For multi-channel audio input, we propose
M2M-AST, which can have output sequences of different resolu-
tions (many-to-many).

2. MANY-TO-MANY AUDIO SPECTROGRAM
TRANSFORMER

2.1. Features

We use logmel and intensity vectors as input features [12] of the
system. Our system infers SED and DOAE separately, each taking
a different input. First, SED splits the channels of the microphone
array into a single channel and then uses features applied by a log-
mel filter. DOAE uses 7-channel inputs by extracting logmel and
intensity vectors from Ambisonic data. This is summarized in Ta-
ble 1. Table 2 shows the pre-processing parameters to extract input
features

Table 1: Feature configuration for sub-tasks

Format Feature # Channels (C)
SED Microphone Array logmel 1
DOAE Ambisonic logmel, intensity vector 7

2.2. Model Architecture

Figure 1 shows the architectures of the original AST [9] and Many-
to-Many AST. AST is a pure Transformer-based model. AST and
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Figure 1: Architecture of AST and Many-to-Many AST; B: batch size, T: time, M: # mel-bins, C: channel, t": output size, n: # patchs, d: patch

dimension, Cl: # class

Table 2: Pre-processing paramters
Pre-processing

Time window length 20ms
Time window stride 10ms
Frame length (T) 200 (2s)
# Mel-bins (M) 128

ViT [7, 8] consist of a similar structure, they have the same stan-
dard Transformer, same patch size, and same embedding dimen-
sions. However, the pre-trained ViT model cannot be used directly
in the AST due to the different sizes of the input feature. There-
fore, AST uses a transfer learning method with weights obtained
by modifying pre-trained weights. First, ViT has 3-channels of in-
put feature, whereas AST uses a single channel feature. Thus, AST
averages the weights of the linear projection layers in ViT to reuse
weights in the linear projection layer in AST. Second, AST is de-
signed to configure various input sizes, but ViT has a fixed 384x384
input format. So AST and ViT has different length of positional
embeddings [p;; py; ---p,,; |- So AST applies positional embeddings
via cutting or bilinear interpolation from ViT’s positional embed-
dings. ViT that uses a 384x384 image gets 24x24 = 576 patches
when using 16x16 patch with no overlap. Besides, AST that uses
1000x128 spectrogram image, gets 100x12 patches when using the
same patch size with stride 10. Therefore AST resizes the 24x24
positional embeddings to 100x12 to reuse them. When using DeiT
[8] as a pre-trained model, AST adapts the average of DieT’s class
token and distillation token as a class token. The Transformer en-
coder used in AST is shown in Figure 2.

Many-to-Many AST and AST have the same structure except
for the I/O structure. Many-to-Many AST has multiple class tokens
because the SELD requires sequential output from multi-channel

Table 3: Model parameters
Model parameter

Patch size (h x w) 16x16
Patch stride 10
# Patches (n) 228
Patch dimension (d) 768
# Encoder layer (L) 12
# Attention head 12
Output resolution (t') 20
Dropout 0.1

recordings. The number of class tokens can be set as much as the
desired output sequence resolution. Many-to-Many AST replicates
the mean values of the linear projection weights of ViT to match
channel sizes so that pre-trained models can be used as in AST. For
class tokens, the average value of DeiT’s class token and distillation
token is used as the initial value of each class token. This modifica-
tion allows ViT weights to be reused in Many-to-Many AST. Table
3 shows model parameters of Many-to-Many AST.

Table 4: Model configuration

Task Pre-trained model Loss
M2M-AST1 SED DeiT BCE
M2M-AST2 SED M2M-ASTI soft f-loss
M2M-AST3 DOAE DeiT MSE
M2M-AST4 DOAE M2M-AST3 masked MSE
M2M-ASTS (Aug) SED M2M-AST1 soft f-loss
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2.3. Loss function

In our system, we mainly use soft f-loss [14, 15] instead of bi-
nary cross-entropy (BCE) for SED and masked mean square er-
ror (masked MSE) for DOAE. Soft f-loss is an objective function
that directly uses the metric F-score. F-score is known as a non-
differentiable function, but it is transformed to be differentiable and
used as an objective function. The F-score function can be modified
as differentiable in equation (1). Using equation (1), the soft f-loss
is defined as equation (2).
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2.4. Post-processing

The input time window for our system is 2 seconds. We slide this
window with a small hop size to create many overlapped results and
average these results during the inference [16]. Additionally, we
apply median filtering and tuning the threshold for each class during
SED inference. Finally, we apply a 16-way rotation augmentation
to infer the test data and average the values obtained by rotating the
results in reverse [16, 17].

3. EXPERIMENTS

We provide experimental results on TAU-NIGENS Spatial Sound
Events 2021 development dataset. The development dataset con-
sists of 600-minute wave files. We use 400 minutes of data for
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Table 5: Hyper-parameters for proposed system

Training
Epoch 50
Batch size (B) 24
Learning rate 0.0001
Optimizer Adam, SWA
Schedule Linear decay after 40
Decay rate 0.8

training, 100 minutes for validation, and the remaining 100 minutes
for testing. Our system is trained using the hyper-parameters in Ta-
ble 5. We use transfer learning with the pre-trained model. The
pre-trained model used in our system is shown in Table 4. We fine-
tune the SED model with 85M parameters and the DOAE model
with 86M parameters for 50 epochs separately. We use the Adam
optimizer. After 40 epochs, the learning rate decreases by a factor
of 0.8 per epoch. We apply Stochastic Weight Averaging (SWA)
[18] to the last 10 epochs for better results. For the development
dataset, the training time consumed by the Many-to-Many AST is 6
hours for SED and 2 hours for DOAE at 4-TITAN Xp. The model
mentioned in Table 4 is used for the experiment, and x0.8 and x1.2
time stretching augmentation are applied for M2M-ASTS.

3.1. Results

To test the individual performance of Many-to-Many AST, we
tested SED with the ideal DOAE and DOAE with the ideal SED. Ta-
ble 6 shows the experiment result for development dataset. We con-
structed label configuration for multi-label classification and multi-
output regression, except where the same classes overlap. So, in
an ideal SED situation, our system excludes co-occurrences of the
same class, so LRcp is 92.5%, not 100% for ideal SED condi-
tion. The performance of M2M-AST was improved by 30 to 36%
in LRep performance compared to baseline [12]. In SED, soft
f-score was slightly better than BCE, but there was no significant
difference. In DOAE, masked MSE shows a performance improve-
ment of about 5 degrees in ideal environments over MSE. M2M-
AST2&4, which combined models for subtasks to derive SELD re-
sults, significantly outperformed baseline. Considering the perfor-
mance of M2M-ASTS, it was difficult to expect performance im-
provement using the time stretching augmentation method.

Table 6: Experimental results for development dataset

Task ER200 FQ()O LECD LRCD
baseline (foa) SELD 0.69 339% 24.1° 439%
baseline (mic) SELD 0.74 247 %  30.9° 38.2 %
M2M-ASTI1 SED - - - 74.0 %
M2M-AST2 SED - - - 74.2 %
M2M-AST3 DOAE - - 22.7° 92.5 %
M2M-AST4 DOAE - - 17.5°  925%
M2M-AST5 SED - - - 71.2 %
M2M-AST1&3  SELD 0.50 65.1 % 17.0° 740 %
M2M-AST1&4  SELD 0.46 69.0% 13.6° 74.0%
M2M-AST2&3  SELD 0.50 65.1 % 17.4° 742 %
M2M-AST2&4  SELD 0.44 69.6 % 13.7° 742 %
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4. SUBMISSION

Based on the results in Table 6, our submission systems are based
on a model using soft f-loss and masked MSE. The submission sys-
tem is configured as shown in Table 7. ID 1 is the system that uses
given training fold configuration of the development dataset. There-
fore, ID 1 is equivalent to the model reported in Table 6. ID 2 is the
system that uses all data in the development dataset. ID 3 is the
system that performed a snapshot ensemble of the results of the last
3 epochs of training in addition to System ID 2. ID 4 is a system
that ensembles M2M-ASTS5 with ID 3. All systems submitted per-
formed ensemble method only on the SED network, and the DOAE
model used a single network.

Table 7: Submission system configuration
ID system
M2M-AST2&4 (Dev)
M2M-AST2&4 (All)
ID2 + M2M-AST2&4 (All, Snapshot Ensemble)
ID1 + ID2 + M2M-ASTS5 (All)

B W -
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