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ABSTRACT

This report describes a multi-scale approach to the DCASE 2021
Sound Event Localization and Detection with Directional Interfer-
ence task. The goal of this task is to detect, classify, and localize
in time and space events from twelve sound event classes in vary-
ing reverberant acoustic environments in the presence of interfering
sources. We train a network that jointly performs detection, local-
ization, and classification using multi-channel magnitude spectral
data and intensity vectors derived from first order ambisonics time-
series. We implement a network with successive blocks of multi-
scale filters to discriminate and extract overlapping classes with dif-
ferent spectral characteristics. We also implement an output format
and permutation invariant training loss that enable the network to
detect, classify, and localize multiple instances of the same class
simultaneously. Experiments show that the proposed network out-
performs the CRNN baseline networks in classification and local-
ization metrics.

Index Terms— sound event localization and detection, direc-
tion of arrival estimation, permutation-invariant training

1. INTRODUCTION

The goal of sound event localization and detection (SELD) is to de-
tect, classify, and localize acoustic sources in time and direction of
arrival (DOA) using recordings from a multi-channel microphone
array. SELD can provide important perceptual input for a num-
ber of automation tasks including robotics, home assistant systems,
and security applications. However, SELD is a challenging task in
acoustic environments with varying impulse responses and rever-
beration, high background noise, and interfering acoustic sources.

The 2021 DCASE SELD task includes many aspects that make
the task challenging. It requires systems to classify and localize
12 different target classes in a wide variety of room environments
with different room impulse responses and background noise char-
acteristics. It also contains many time periods where up to three
target classes are present simultaneously along with directional in-
terference sources that don’t belong to any of the target classes. The
target classes can be stationary or mobile, and occur at varying SNR
levels from 6dB to 30dB. The recordings are provided as 4-channel
microphone or first order ambisonics (FOA) data as measured by a
spherical microphone array.

Historically, sound event detection and localization have been
accomplished using signal processing and tracking algorithms such
as the TRAMP algorithm that utilizes a voice-activity detector and

pseudo-intensity measurements in a particle filter to detect and lo-
calize acoustic sources [1]. Recently, however, end-to-end trained
convolutional recurrent neural networks (CRNN) have been shown
to exceed the performance of traditional algorithms for sound event
detection and localization [2, 3]. Additionally, end-to-end trained
networks have been the top performing approaches to previous
DCASE SELD tasks including an ensemble of CRNNs in 2019 [4]
and an ensemble of multiple deep neural networks in 2020 [5].

This report describes an end-to-end trained deep network for
jointly detecting, classifying, and localizing the acoustic target
classes using the FOA data. The network takes as input log magni-
tude spectral representations of the acoustic time-series, along with
corresponding intensity vector representations, and outputs class
confidence and DOA estimates at 100 ms intervals. The network is
capable of detecting, classifying, and localizing up to two instances
of each class simultaneously. Due to the high degree of polyphony
(multiple sound sources transmitting jointly) in the data, we design
the network to operate at multiple time/frequency scales throughout
and to carry this multi-scale operation through the network. Our in-
tuition in doing this is that to detect, classify, and localize multiple
sound sources simultaneously, the model must recognize spectral
content at different scales for different classes, and then filter the
corresponding frequencies in the intensity vector representation to
estimate DOA.

In the following sections we describe the network architecture,
loss function, and training procedure. Experimental results show
that the multi-scale network achieves SELD metrics that outperform
the baseline CRNN model on the DCASE 2021 test set, Fold 6,
when trained on Folds 1 - 5.

2. MODEL DESCRIPTION

Figure 1 shows the model architecture. The log-spectral and in-
tensity vector inputs are processed through several successive lay-
ers of neural architecture search (NAS) [6] and pyramid scene
parsing blocks [7] before being processed by a multi-headed self-
attention layer (MHSA) [8] that outputs to three parallel dense
layers to predict output detections and DOA coordinates for each
class in cartesian coordinates. The output tensors have dimen-
sion 40x12x2, representing 40 time samples (for 4 seconds of data
with 100 ms resolution), twelve classes, and up to two instances
of the same class simultaneously. The output structure performs
detection, classification, and DOA estimation jointly by using the
activity-coupled cartesian DOA (ACCDOA) output vector proposed
by Shimada, et al. [9]. ACCDOA uses the magnitude of the
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Figure 1: SELD Model Architecture.

[x̂(t, c, i), ŷ(t, c, i), ẑ(t, c, i)] vector to indicate the presence or ab-
sence of an acoustic source at a particular time (t), class (c), index
(i) tuple, and the vector direction gives the DOA.

In the following subsections, we provide additional details on
the input representation and data augmentation, on the network ar-
chitecture, and finally on the loss function and training optimiza-
tion.

2.1. Input Representation

The network input is derived from the four-channel FOA format
data sampled at 24 kHz. We include log-magnitude spectral repre-
sentations for each FOA channel and accompanying x, y, z compo-
nents of the corresponding intensity vector. We train networks using
either constant-Q or logmel spectral representation with associated
intensity vectors.

Constant-Q is time-frequency representation where the ratio of
center frequency to bandwidth of the bins is kept constant. We
utilize the constant-Q implementation in Librosa [10] with a mini-
mum frequency of 50 Hz, 48 bins-per-octave, a hop length of 576,
and 379 bins (corresponding to a maximum frequency of 11.74
kHz). Our network processes 4 second chunks of data, result-
ing in 167 time scans in the input representation. We also com-
pute an intensity vector for each bin in the constant-Q input sur-
face. Define the complex constant-Q data for the omni, x, y,
and z channels of the FOA data at time t and frequency f as
ocq(t, f), xcq(t, f), ycq(t, f), zcq(t, f). We can compute the cor-
responding x, y, z components of the intensity vector as [3]:

ix(t, f) = Real
{
o∗cq(t, f)xcq(t, f)

}
,

iy(t, f) = Real
{
o∗cq(t, f)ycq(t, f)

}
,

iz(t, f) = Real
{
o∗cq(t, f)zcq(t, f)

}
,

where o∗cq(t, f) denotes complex conjugate of the omni-channel
data.

We normalize the log-magnitude of the constant-Q surfaces by
clipping to a range of [−25,−3] and then scale the values to lie
between 0 and 1. We normalize the intensity data by computing
the log-magnitude, clipping it to a range of [−50, 6], scaling it to
lie between 0 and 1, and then re-applying the sign of the original
intensity bin. Examples of the resulting normalized omni-channel
and intensity vector representations are shown in Figure 2.

For the logmel input, we use the same processing parameters
and intensity vector representation as Cao, et al. [11]. This includes

segmenting the data into 4-second segments and computing a log-
mel spectral and intensity representation with 256 bins and 160 time
scans.

2.2. Data Augmentation

Previous DCASE SELD competitions have shown that data aug-
mentation is critical for achieving good generalization performance
[12]. We perform wav mixing and rotation on FOA time-series data
prior to generating logmel or normalized constant-Q spectral prod-
ucts, where we then apply frequency and time masking [13] before
passing the augmented inputs to our models.

We perform rotation augmentation by first transforming the co-
ordinates of the truth data from azimuth, elevation to cartesian x, y,
z coordinates. We then apply a random rotation matrix to the truth
and the x, y, z channels of the FOA time-series. This is comparable
to the labels first rotation method proposed in [14].

2.3. Network Architecture

The network consists of two primary modules. A Convolutional net-
work feature extractor and a Multi-Head-Self-Attention (MHSA)
block that operates on the output of the CNN feature extractor.
To facilitate learning from signals with potentially varying spectral
characteristics we use NASnet-like [6] convolution modules, termed
NAS blocks in Figure 1, along with convolution modules inspired
by PSPNet [7], termed pyramid scene parsing blocks in Figure 1.
We anticipate that these multi-scale modules will enable the CNN
to extract features at varying scales in the data, allowing for poten-
tially better generalization to acoustic targets with varying spectral
characteristics and bandwidths.

The DCASE 2021 SELD task contains many time periods
where multiple instances of the same class are present simultane-
ously at different DOAs. Therefore, we implement an output repre-
sentation that allows the network to classify up to two instances of
the same class in each time scan. The network is made to produce
outputs for cartesian x, y, and z coordinates for up to two instances
of the same class simultaneously. We use the simplifying ACC-
DOA representation to predict classification and DOA with a single
model [9]. Due to the ACCDOA representation we use only a single
network to jointly estimate cartesian DOA and class labels without
an explicit classification loss function.
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Figure 2: A 60-second sample of the normalized constant-Q representation of the FOA Omni channel and normalized intensity vector surfaces
for one of the DCASE 2021 training files.

2.4. Network Training

We train models with varying sized MHSA heads and with constant-
Q or logmel spectral representations as input. We use the AdamW
optimizer [15] with a warmup-cooldown schedule as in [8]. The
learning rate is warmed up for the first 20K/30K steps (depending
on the model) of training before cooling down for the remainder of
the training steps. In total we train models for about 187,500 steps.
We perform random combinations of the augmentations given in
Section 2.2 and generate the resulting logmel and constant-Q spec-
tra on-the-fly to facilitate training with a maximum variety of data.
We optimize all of our models with a permutation-invariant version
of mean squared error similar to that first proposed in [16]. The
permutation invariance is applied along the instance dimension of
the x̂, ŷ, ẑ outputs jointly to account for the ambiguity in assigning
a detection to an instance.

3. EXPERIMENTAL SETUP AND RESULTS

We utilize the DCASE 2021 FOA data to train and evaluate several
networks for comparison to the DCASE 2021 baseline. We train on
Folds 1 - 5 and evaluate on Fold 6. Each fold contains 100 one-
minute recordings with multiple overlapping sound events. Each
fold contains contains data from room environments with different
impulse response and background noise characteristics. The time-
series recordings also contain random instances of interferers that
do not belong to any class. More details of the data can be found on
the DCASE 2021 SELD challenge page [12].

We evaluate the models using the metrics specified for the
DCASE 2021 challenge. These include the error and F-Score at 20
degrees denoted ER20◦ and F20◦ and the classification dependent
localization error and localization recall denoted LECD and LRCD.
ER20◦ and F20◦ compute classification error rate and F-Score on
classifications localized to within 20◦ of the true DOA. LECD com-
putes the localization error in degrees between truth and estimates
of the same class, and LRCD computes class-based recall. These
metrics are described in further detail in [17].

Table 1 gives metrics for the DCASE 2021 FOA Baseline net-

Network ER20◦ F20◦ LECD LRCD

DCASE 2021
FOA Baseline

0.69 33.9 % 24.1◦ 43.9 %

DCASE 2021
MIC Baseline

0.74 24.7 % 30.9◦ 38.2 %

Multi-Scale
logmel

0.65 57.1 % 17.5◦ 62.8 %

Multi-Scale
constant-Q

0.63 54.3 % 18.2◦ 55.3 %

Table 1: SELD metrics for four networks when trained on Folds 1-5
and evaluated on Fold 6.

work [12] and the proposed multi-scale network trained with the
logmel and constant-Q inputs. Results show that the proposed ap-
proach outperforms the baseline network in all metrics, with signif-
icantly better F20◦ and LRCD.

4. CONCLUSION

We have presented a multi-scale network for detecting, classifying,
and localizing acoustic targets and have applied it to the DCASE
2021 SELD task. The output structure enables the network to clas-
sify multiply instances of the same target class simultaneously. Ex-
periments show that the proposed network achieves improved per-
formance in all metric categories when compared to the baseline
model for the 2021 DCASE SELD task.
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multiple doa estimation using acoustic intensity features for
ambisonics recordings,” IEEE Journal of Selected Topics in
Signal Processing, vol. 13, no. 1, pp. 22–33, 2019.

[4] S. Kapka and M. Lewandowski, “Sound source detection, lo-
calization and classification using consecutive ensemble of
crnn models,” arXiv preprint arXiv:1908.00766, 2019.

[5] Q. Wang, H. Wu, Z. Jing, F. Ma, Y. Fang, Y. Wang, T. Chen,
J. Pan, J. Du, and C.-H. Lee, “The ustc-iflytek system for
sound event localization and detection of dcase2020 chal-
lenge,” DCASE2020 Challenge, Tech. Rep, Tech. Rep., 2020.

[6] B. Zoph and Q. V. Le, “Neural architecture search with rein-
forcement learning,” arXiv preprint arXiv:1611.01578, 2016.

[7] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene
parsing network,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2017, pp. 2881–
2890.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” arXiv preprint arXiv:1706.03762, 2017.

[9] K. Shimada, N. Takahashi, S. Takahashi, and Y. Mitsu-
fuji, “Sound event localization and detection using activity-
coupled cartesian doa vector and rd3net,” arXiv preprint
arXiv:2006.12014, 2020.

[10] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “librosa: Audio and music sig-
nal analysis in python,” in Proceedings of the 14th python in
science conference, vol. 8. Citeseer, 2015, pp. 18–25.

[11] Y. Cao, T. Iqbal, Q. Kong, Z. Yue, W. Wang, and M. D. Plumb-
ley, “Event-independent network for polyphonic sound event
localization and detection,” DCASE2020 Challenge, Tech.
Rep., July 2020.

[12] http://dcase.community/challenge2021/.

[13] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data aug-
mentation method for automatic speech recognition,” arXiv
preprint arXiv:1904.08779, 2019.

[14] L. Mazzon, Y. Koizumi, M. Yasuda, and N. Harada,
“First order ambisonics domain spatial augmentation for
dnn-based direction of arrival estimation,” arXiv preprint
arXiv:1910.04388, 2019.

[15] I. Loshchilov and F. Hutter, “Fixing weight decay regulariza-
tion in adam,” 2018.

[16] D. Yu, M. Kolbæk, Z.-H. Tan, and J. Jensen, “Permutation
invariant training of deep models for speaker-independent
multi-talker speech separation,” in 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 241–245.

[17] A. Politis, A. Mesaros, S. Adavanne, T. Heittola, and T. Virta-
nen, “Overview and evaluation of sound event localization and
detection in dcase 2019,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2020.


