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Abstract—This report shows a deep learning framework for
audio-visual scene classification (SC). Our extensive experiments,
which are conducted on DCASE Task 1B development dataset,
achieve the best classification accuracy of 82.2%, 91.1%, and
93.9% with audio input only, visual input only, and both audio-
visual input, respectively.

Index Terms—Audio-visual scene, pre-trained model, Ima-
genet, AudioSet, deep learning framework.

I. INTRODUCTION

Analysing both audio and visual (or image) information
from videos has opened a variety of real-life applications such
as detecting the sources of sound in videos [1], lip-reading
by using audio-visual alignment [2], or source separation [3].
Joined audio-visual analysis shows effective compared to the
visual only data proven in tasks of video classification [4],
multi-view face recognition [5], emotion recognition [6], or
video recognition [7]. Although a number of audio-visual
datasets exit, they mainly focus on human for specific tasks
such as detecting human activity [8], action recognition [9],
classifying sport types [10], [11], or emotion detection [6].
DCASE community [12] has released an audio-visual dataset
used for DCASE 2021 Task 1B challenge of classifying ten
different scene contexts [13]. We therefore evaluate this dataset
by leveraging deep learning techniques.

II. DEEP LEARNING FRAMEWORKS PROPOSED

As we aim to evaluate individual roles of audio and visual
features within SC task, deep learning frameworks using either
audio or visual input are presented in separate sections.

A. Audio-based deep learning frameworks

In audio-based deep learning frameworks, audio recordings
are firstly transformed into spectrograms, referred to as front-
end low-level feature extraction. As using ensemble of either
different spectrogram inputs [14]-[17] or different deep neural
networks [18], [19] has been a rule of thumb to improve audio-
based SC performance, we therefore uses three spectrogram
transformation methods: Mel filter (MEL) [20], Gammatone
filter (GAM) [21], and Constant Q Transform (CQT) [20].
These spectrograms are then split into ten 50%-overlapping
patches, each which represents for 1-second audio segment.
To enforce back-end classifiers, mixup data augmentation [22],
[23] is applied on these patches of spectrogram before feeding
into a VGGish network for classification as shown in Ta-
ble I. As description shown in Table I, the VGGish network

TABLE I
THE VGG14 NETWORK ARCHITECTURE USED FOR AUDIO-BASED
FRAMEWORKS.
Network architecture Output
BN - Conv [3x3]@64 - ReLU - BN - Dr (25%) 128x128x 64
BN - Conv [3x3]@64 - ReLU - BN - AP - Dr (25%) 64x64x64
BN - Conv [3x3]@128 - ReLU - BN - Dr (30%) 64x64x128
BN - Conv [3x3]@128 - ReLU - BN - AP - Dr (30%) 32x32x128
BN - Conv [3x3]@256 - ReLU - BN - Dr (35%) 32x32x256
BN - Conv [3x3]@256 - ReLU - BN - Dr (35%) 32x32x256
BN - Conv [3x3]@256 - ReLU - BN - Dr (35%) 32x32x256
BN - Conv [3x3]@256 - ReLU - BN - AP - Dr (35%) 16 x16x 256
BN - Conv [3x3]@512 - ReLU - BN - Dr (35%) 16x16%x512
BN - Conv [3x3]@512 - ReLU - BN - Dr (35%) 16x16x512
BN - Conv [3x3]@512 - ReLU - BN - Dr (35%) 16x16%x512
BN - Conv [3x3]@512 - ReLU - BN - GAP - Dr (35%) 512
FC - ReLU - Dr (40%) 1024
FC - Softmax C =10
TABLE II
THE NETWORK ARCHITECTURES [28] PROPOSED FOR VISUAL BASED
FRAMEWORKS

Network architectures Image inputs

1/ Xception 299x299% 3

2/ Vggl9 2242243

3/ Resnet50 224x224x3

4/ InceptionV3 299x299x 3

5/ MobileNetV2 224x224%3

6/ DenseNet121 299x299x 3

7/ NASNetLarge 331x331x3

architecture contains sub-blocks which perform convolution
(Conv), batch normalization (BN) [24], rectified linear units
(ReLU) [25], average pooling (AV), global average pooling
(GAP), dropout (Dr) [26], fully-connected (FC) and Soft-
max layers. In total, we have 12 convolutional layers and
2 fully-connected layers containing trainable parameters that
makes the proposed network architecture like VGG14 [27].
We refer three audio-spectrogram based frameworks proposed
to as audio-CQT-Vggl4, audio-GAM-Vggl4, and audio-MEL-
Vggl4, respectively.

B. Visual-based deep learning frameworks

We use the network architectures from Keras application li-
brary [28], which are considered as benchmarks for evaluating
ImageNet dataset [29] as shown in Table II, for visual-based
deep learning frameworks. In order to directly train image
frame inputs with the network architectures in Table II, we
reduce the C' dimension of the final fully connected layer
(C = 1000 that equals to the number of object detection
defined in ImageNet dataset) to C' = 10 that matches the



number of scene categories classified. The visual-based deep
learning frameworks proposed are referred to as visual-image-
Xception, visual-image-Vggl9, visual-image-Resnet50, visual-
image-InceptionV3, visual-image-MobileNetV2, visual-image-
DenseNet121, and visual-image-NASNetLarge, respectively.
Same as audio-based approaches, the final classification ac-
curacy of visual-based frameworks is obtained by applying
late fusion of individual frameworks.

III. EVALUATION SETTING
A. TAU Urban Audio-Visual Scenes 2021 dataset [13]

This dataset is referred to as DCASE Task 1B Develop-
ment, which was proposed for DCASE 2021 challenge [12].
The dataset in slightly unbalanced and contains both acous-
tic and visual information, recorded from 12 large Euro-
pean cities: Amsterdam, Barcelona, Helsinki, Lisbon, London,
Lyon, Madrid, Milan, Prague, Paris, Stockholm, and Vienna.
It consists of 10 scene classes: airport, shopping mall (indoor),
metro station (underground), pedestrian street, public square,
street (traffic), traveling by tram, bus and metro (underground),
and urban park, which can be categorised into three meta-
class of indoor, outdoor, and transportation. To evaluate, we
follow the DCASE 2021 Task 1B challenge [12], separate this
dataset into training (Train.) and evaluation (Eval.) subsets.
Then, Train. subset is used for training frameworks proposed
and Eval. subset is used for evaluating.

B. Deep learning framework implementation

We use Tensorflow framework to build all classification
models in this report. As we apply mixup data augmenta-
tion [22], [23] to enforce back-end classifiers, the labels of
the mixup data input are no longer one-hot. We therefore train
back-end classifiers with Kullback-Leibler (KL) divergence
loss [30] rather than the standard cross-entropy loss over all
N mixup training samples: The training is carried out for 100
epochs using Adam [31] for optimization.

C. Late fusion strategy for multiple predicted probabilities

As back-end classifiers work on patches of spectrograms or
image frames, the predicted probability of an entire spectro-
gram or all image frames of a video recording is computed by
averaging of all images or patches’ predicted probabilities. Let
us consider P™ = (p}, p3, ..., p&), with C being the category
number and the n*" out of N image frames or patches of
spectrogram fed into a learning model, as the probability of
a test instance, then the average classification probability is
denoted as p = (p1, P2, .., Pc) Where,

N
1
pe= D vl for 1<n<N (1)

n=1

and the predicted label ¢ for an entire spectrogram or all image
frames evaluated is determined as:

§ = argmax(p1, P2, -, PC) @)

TABLE III
PERFORMANCE COMPARISON OF AUDIO-BASED FRAMEWORKS
Audio Based Frameworks Acc.
audio-CQT-Vggl4 68.3
audio-GAM-Vggl4 69.6
audio-MEL-Vggl14 72.2
MAX Fusion 78.0
MEAN Fusion 79.7
PROD Fusion 80.4
TABLE IV
PERFORMANCE COMPARISON OF VISUAL-BASED FRAMEWORKS
Visual Based Frameworks Acc.
visual-image-Xception 85.9
visual-image-Vgg19 83.8
visual-image-Resnet50 86.3
visual-image-InceptionV3 88.9
visual-image-MobileNetV2 84.4
visual-image-DenseNet121 87.8
visual-image-NASNetLarge  86.9
MAX Fusion 90.2
MEAN Fusion 90.5
PROD Fusion 91.1

To evaluate ensembles of multiple predicted probabilities
obtained from different frameworks, we proposed three late
fusion schemes, namely MEAN, PROD, and MAX fusions.
In particular, we conduct experiments over individual frame-
works, thus obtain predicted probability of each framework
as Ps = (Ps1,Ps2,-.-,Psc) Where C is the category num-
ber and the s'™ out of S framework evaluated. Next, the
predicted probability after late MEAN fusion pf_mean =
(1, P2, ..., Dc) is obtained by:

S
1S
pczggpsc for 1<s<S8§ 3)

The PROD strategy ps—_prod = (P1,P2, .-, Dc) is obtained
by,

S
I -
pczggpsc for 1<s<S 4)

and the MAX strategy pf—max = (D1, D2, ..., pc) is obtained
by,
ﬁc = mal‘(ﬁlc,ﬁ207 "'aﬁSC) (5)

Finally, the predicted label g is determined by (2):

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Analysis of audio-based deep learning frameworks for
scene classification

As Table III shows accuracy results obtained from audio-
based deep learning frameworks, we can see that all late
fusion methods help to improve the performance significantly,
achieve the highest score of 80.4% from PROD fusion.(Note
that these frameworks and DCASE baseline only use audio
data input).
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Fig. 1. Performance comparison (Acc.%) of DCASE baseline, MEL-InceptionV3 and all-models across all scene categories

B. Analysis of visual-based deep learning frameworks for
scene classification

As obtained results are shown in Table IV, we can see that
the PROD fusion of seven visual-image based frameworks
achieves the best accuracy of 91.1%, improving DCASE
baseline by 13.7% (Note that these frameworks and DCASE
baseline only use visual data input).

Compare performance between audio-based and visual-
based approaches, the PROD fusion of seven visual based
frameworks (91.1%) outperforms the best result of 80.4%
from PROD fusion of audio-CQT-Vggli4, audio-GAM-Vggl4,
audio-MEL-Vggl4 mentioned in Section IV-A.

C. Combine both visual and audio features for scene classi-
fication

We then evaluate a combination of audio and visual fea-
tures by proposing two PROD fusions: (1) three audio based
frameworks (audio-CQT-Vggl4, audio-GAM-Vggl4, audio-
MEL-Vggl4) and top-3 visual based frameworks (visual-
image-DenseNetl121, visual-image-InceptionV3, visual-image-
NASNetLarge) referred to as all-models, and (2) one audio
based framework (audio-MEL-Vggl4) and one visual based
framework (visual-image-InceptionV3) referred to as MEL-
InceptionV3. As results shown in Fig. 1, all-models helps to
achieve the highest accuracy classification score of 93.9%, im-
proving DCASE baseline by 16.5% and showing improvement
on all scene categories. Although MEL-InceptionV3 only fuses
two frameworks, it achieves 92.8%, showing competitive to
all-models fusing 6 frameworks.

D. Early detecting scene context

We further evaluate whether deep learning frameworks
proposed can help to detect scene context early. To this end,
we evaluate 10 different frameworks: (1-2-3) 3 individual au-
dio based frameworks (audio-CQT-Vgg 14, audio-GAM-Vggl4,
audio-MEL-Vggi4), (4) PROD fusion of these three audio
based frameworks referred to as all-audio-models, (5-6-7) 3
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Fig. 2. Performance of individual audio based frameworks (audio-CQT-
Vggl4, audio-GAM-Vggl4, audio-MEL-Vggl4), PROD fusion of three au-
dio based frameworks (all-audio-models), individual visual based frame-
works (visual-image-NASNetLarnge, visual-image-Densnet121, visual-image-
InceptionV3), PROD fusion of three visual based frameworks (all-visual-
model), PROD fusion of audio-based and visual-based frameworks (MEL-
InceptionV3, all-models) with the increasing number of 1l-second input
segments

visual based frameworks (visiual-image-NASNetLarge, visual-
image-Densnetl21, visual-image-InceptionV3), (8) PROD fu-
sion of these three visual-image based frameworks referred
to as all-visual-models, (9) MEL-InceptionV3, and (10) all-
models. As the results shown in Fig. 2, while performance
of audio-based frameworks is improved by time, visual-based
frameworks show stable. As a result, when we combine audio
and visual features, which are evaluated in MEL-InceptionV3
and all-models, the performance is improved by time and
stable after 6 seconds. Notably, accuracy scores of both MEL-
InceptionV3 and all-models are larger than 90.0% at the
first second, which is potentially for real-life applications
integrating the function of early detecting scene context.

V. CONCLUSION

We conducted extensive experiments and explored various
deep learning based frameworks for classifying 10 categories
of urban scene. Our method, which uses an ensemble of



audio-based and visual-based frameworks,

achieves the

best classification accuracy of 93.9% on DCASE Task 1B
development set. The obtained results outperform DCASE
baseline, improving by 17.1% with only audio data input,
26.2% with only visual data input, and 16.5% with both
audio-visual data.
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