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Abstract—In this report, we presents a low-complexity deep
learning frameworks for acoustic scene classification (ASC).
The proposed framework can be separated into three main
steps: Front-end spectrogram extraction, back-end classification,
and late fusion of predicted probabilities. In the first step,
we use Mel filter, Gammatone filter and Constant Q Trans-
from (CQT) to transform draw audio signal into spectrograms.
Three spectrograms are then feed into three individual back-
end convolutional neural networks (CNNs) for classification.
Finally, a late fusion of three predicted probabilities obtained
from three CNNs is conducted to achieve the final classification
result. To reduce the complexity of CNN network architecture
proposed, we apply two model compression techniques: model
restriction and decomposed convolution. Our experiments, which
are conducted on DCASE 2021 Task 1A development dataset,
achieve a low-complexity CNN based framework with 128 KB
trainable parameters and the best classification accuracy of
66.7%, improving DCASE baseline by 19.0%.

Index Terms—Convlutional neural network, Gammatone filter,
constant Q transoform, MEL filter, spectrogram, deep learning.

I. INTRODUCTION

To deal with ASC challenges such as unbalanced data,
lacking of data input, or mismatch recording devices, various
methods have been proposed, which can be separated into two
main approaches. The first approach makes use of multiple
data input such as ensemble of spectrograms [1]–[3] or au-
dio channels [4]. Meanwhile, the second approach focuses
on back-end classification, proposes powerful deep learning
network architectures which are able to enforce the training
process [5]–[8]. Although these two approaches can achieve
good results, they present high-complexity systems. Indeed,
while multiple input data requires an ensemble of multiple
individual classification models [9], [10], powerful network
architectures show a number of convolutional layers [5], [6].
All top-10 systems proposed in recent DCASE chalenges in
2018, 2019, 2020 also show large architectures, requiring
larger than 2 MB of trainable parameters. The issue of network
complexity prevents applying for edge devices with respect
to real-life applications. Although there are various methods
proposed to deal with the issue of model complexity such
as quantizaton [11], pruning [12], [13], model restriction
(i.e. restriction on the number of layers [14] or the number
of kernel [15] or both of these factors [16]), decomposed
convolution [17], or hybrid methods using pruning and decom-
posed convolution [17], pruning and distillation [18], these are
mainly applied for image data. This report therefore introduces
a low-complexity deep learning framework for ASC. To deal
with ASC challenges, we propose an ensemble of multiple

spectrogram inputs, using Mel filter [19], Gammaton [20]
filter, and CQT [19]. For each network used for training an
individual spectrogram input, we deal with the issue of model
complexity by combining model restriction and decomposed
convolution methods.

II. THE LOW-COMPLEXITY DEEP LEARNING FRAMEWORK
PROPOSED

A. Our baseline

To evaluate, we firstly propose a baseline with high-level
architecture shown in Fig. 1. Initially, a draw audio signal
is firstly transformed into a spectrogram by using MEL fil-
ter [19]. Next, the spectrogram are split into patches before
feeding into a CNN based network for classification. As
the CNN based network architecture proposed is shown in
Table I, it contains sub-blocks which perform convolution
with Cout channel (Convolution ([kernel size]@Cout)), batch
normalization (BN) [21], rectified linear units (ReLU) [22],
average pooling (AV [kernel size]), global average pooling
(GAP), dropout (percentage dropped) [23], fully-connected
(FC), and Softmax layers. In total, we have 6 convolutional
layers and 1 fully-connected layers that makes the proposed
network architecture like CNN-7. As the CNN-7 works on
patches, the final predicted probability of an entire spectrogram
is computed by averaging of all patches. As we use three
spectrogram input (CQT, log-mel, and Gammatonegram) as
a rule of thumb to improve ASC performance [9], [10], an
ensemble of these predicted probabilities obtained from three
spectrogram inputs is applied.

B. Model compression methods applied to the CNN-7 network

Regarding the CNN-7 architecture proposed, it reports a
complexity of 1,129 MB for non-zero parameters with using
32 bits for representing one trainable parameter. Additionally,
using ensemble of three spectrogram inputs make the the
number of trainable parameters further increase three times. To
reduce the model complexity, we firstly restrict the number of
channels used in the CNN-7 baseline, then reduce the channels
of Cout1 from 32 to 16, Cout3 and Cout4 from 64 to 32,
Cout5 and Cout6 from 128 to 64. The channel restriction (CR)
proposed helps to reduce the CNN-7 complexity to 313 KB
that nearly equals to 1/4 of the original size.

We further reduce the CNN-7 complexity by applying the
decomposed convolution (DC) technique described in [17],
[24]. Let us consider Cin and Ccout as the input and output
channel numbers respectively, W = 3 and L = 3 are the
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Fig. 1. High-level architecture of ASC baseline system proposed.

TABLE I
THE CNN-7 NETWORK ARCHITECTURE BASELINE (INPUT PATCH OF 128×128×3)

Network architecture Output
BN - Convolution ([3×3]@Cout1 = 32) - ReLU - BN - Dropout (10%) 128×128×32
BN - Convolution ([3×3]@Cout2 = 32) - ReLU - BN - AP [2×2] - Dropout (10%) 64×64×32
BN - Convolution ([3×3]@Cout3 = 64) - ReLU - BN - Dropout (10%) 64×64×64
BN - Convolution ([3×3]@Cout4 = 64) - ReLU - BN - AP [2×2] - Dropout (10%) 32×32×64
BN - Convolution ([3×3]@Cout5 = 128) - ReLU - BN - AP [2×2] - Dropout (10%) 16×16×128
BN - Convolution ([3×3]@Cout6 = 128) - ReLU - BN - GAP - Dropout (10%) 128
FC - Softmax C = 10

dimensions of kernel size, which are used for a convolu-
tional layer. Then, the number of trainable parameters at a
convolutional layer is computed by W × L × Cin × Cout =
9×Cin×Cout . We reduce the number of trainable parameters
at a convolutional layer by decomposing the convolutional
layer into 4 sub-convolutional layers as described in Fig. 2.
For all four sub-convolutional layers, the output channel is
reduced to Cout/4. Regarding the first sub-convolutional layer
(the upper path shown in Fig. 2), although we still use kernel
size of [W×L]=[3×3], we reduce the input channels to Cin/4,
then cost (9×Cin×Cout)/16 trainable parameters. Regarding
the other sub-convolution layers, we reduce the kernel size to
[W×L]=[1×1]. While the input channel is reduced to Cin/2
at the second and third sub-convolutional layers (two middle
paths shown in Fig. 2), it is remained in the fourth sub-
convolutional layer (the lower path shown in Fig. 2). As a
result, it requires (Cin × Cout)/8 for the second and third
sub-convolutional layers, and (Cin × Cout)/4 for the fourth
sub-convolution layer. By decomposing a convolutional layer
into four sub-convolutional layers, the model complexity is
reduced to nearly 1/8.5 of the original size. By combining the
two model compression techniques, we can achieve a CNN-
7 network architecture with complexity of 42.6 KB, which
nearly equals to 1/25 of the original size (i.e. the CNN-7
network architecture proposed in the baseline framework in
Table I). As we need to use three CNN-7 for three different
spectrogram inputs, the final complexity of the framework
proposed is approximately 128 KB.

III. EVALUATION SETTING

A. TAU Urban Acoustic Scenes 2020 Mobile, development
dataset [25]

This dataset is referred to as DCASE 2021 Task 1A Devel-
opment, which was proposed for DCASE 2021 challenge [26].
In this challenge, the limitation of model complexity is set
to 128 KB with using 32 bits for one trainable parameter.
The dataset in slightly unbalanced, recorded from 12 large
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Fig. 2. Decomposed convolution technique applied to a convolutional layer.

European cities: Amsterdam, Barcelona, Helsinki, Lisbon,
London, Lyon, Madrid, Milan, Prague, Paris, Stockholm, and
Vienna. It consists of 10 scene classes: airport, shopping
mall (indoor), metro station (underground), pedestrian street,
public square, street (traffic), traveling by tram, bus and metro
(underground), and urban park. The audio recordings were
recorded from 3 different devices namely A (10215 record-
ings), B (749 recordings), C (748 recordings). Additionally,
synthetic data for 11 mobile devices was created based on the
original recordings, referred to as S1 (750 recordings), S2 (750
recordings), S3 (750 recordings), S4 (750 recordings), S5 (750
recordings), and S6 (750 recordings). As a result, this task not
only requires low complexity model, but it also proposes an
issue of mismatch device. To evaluate, we follow the DCASE
2021 Task 1A challenge [26], separate this dataset into training
(Train.) and evaluation (Eval.) subsets. Then, Train. subset is
used for training frameworks proposed and Eval. subset is used
for evaluating. Notably, two of 12 cities and S4, S5, S6 audio
recordings are only presented in the Eval. subset for evaluating
the issue of mismatch recording devices and unseen samples.



TABLE II
PERFORMANCE COMPARISON AMONG DCASE BASELINE, THE CNN-7

BASELINE, THE CNN-7 BASELINE WITH CHANNEL RESTRICTION (CNN-7
W/ CR), AND THE CNN-7 BASELINE WITH CHANNEL RESTRICTION AND

DECOMPOSED CONVOLUTION (CNN-7 W/ CR & DC).

DCASE CNN-7 CNN-7 CNN-7 w/
baseline baseline w/ CR CR & DC

Category (90.3 KB) (1.1 MB) (313 KB) (42.6 KB)
Airport 40.5 59.5 50.3 64.5
Bus 47.1 73.7 70.4 69.0
Metro 51.9 57.6 49.8 70.0
Metro station 28.3 53.9 48.1 45.1
Park 69.0 73.1 78.5 74.4
Public square 25.3 34.3 38.4 25.9
Shopping mall 61.3 52.9 50.2 43.4
Street pedestrian 38.7 39.4 35.0 32.7
Street traffic 62.0 84.5 88.2 89.6
Tram 53.0 67.9 62.5 52.7
Average 47.7 59.7 57.1 56.7

TABLE III
THE NUMBER OF 10-SECOND AUDIO-VISUAL SCENE RECORDINGS

CORRESPONDING TO EACH DEVICE IN THE TRAIN. AND EVAL. SUBSETS
SEPARATED FROM THE DCASE 2021 TASK 1A DEVELOPMENT

DATASET [27] AND PERFORMANCE FOR EACH DEVICES.

Devices Train. Eval. Acc. %
A 10215 330 79.1
B 749 329 69.6
C 748 329 70.8
S1 750 330 65.8
S2 750 330 63.6
S3 750 330 67.0
S4 0 330 63.9
S5 0 330 60.0
S6 0 330 60.3

B. Deep learning framework implementation

We use Tensorflow framework to build all classification
models in this papers. The cross-entropy loss function is used
for training and Adam algorithm is used for optimization.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Performance comparison between DCASE baseline and the
CNN-7 baseline with or without using model compression
methods

As experimental results are shown in Table II, although the
CNN-7 baseline outperforms DCASE baseline and helps to
improve the accuracy by 12%, the CNN-7 baseline complex-
ity is much larger than DCASE baseline. By using model
compression methods (CR & DC), we can achieve a low-
complexity model referred to as CNN-7 with CR & DC,
which is nearly 1/2 of the DCASE baseline complexity, but
still outperforms DCASE baseline and achieves an accuracy
improvement of 9%.

B. Evaluate ensemble of different spectrogram inputs

Given the optimized framework (CNN-7 with CR & DC),
we conduct a fusion of three predicted probabilities from three
spectrogram inputs to obtain the final classification accuracy.
We then compare performances among DCASE baseline,
the optimized framework with individual spectrograms, the
optimized framework and ensemble of multiple spectrograms,

across all scene categories. As experimental results are shown
in Fig.3, GAM and MEL achieve competitive results, and out-
perform CQT at almost scene categories except for ’Airport’
and ’Bus’. The ensemble of three spectrogram inputs helps
to achieve an average accuracy of 66.7%, improving DCASE
baseline by 19%, and notably showing improvement over all
scene categories.

Further analysing performance over different recording de-
vices as shown in Table III, we can see that device A outper-
forms the other devices as this device is dominant in Train.
subset. Although there is a lacking of training samples for
device B and C, they achieves competitive accuracy of 69.6%
and 70.8% respectively, compared with device A performance
of 79.1%. Regarding synthesized devices from S1 to S6,
although there is no samples from S4, S5, S6 in Train. subset,
the performance of these devices are competitive to the other
S1, S2, S3. The analysis proves that the ASC framework
proposed not only shows low complexity of 128 KB, it also
can tackle the issue of mismatched recording devices.

V. CONCLUSION

We have just presented a low-complexity framework for
ASC, which makes use multiple spectrogram inputs and model
compression techniques. While the ensemble of multiple spec-
trograms helps to tackle different ASC challenges of mismatch
recording devices or lacking of input to improve the perfor-
mance, a combination of model restriction and decomposed
convolution techniques is effective to achieve a low model
complexity of 128 KB.
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