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ABSTRACT

This technical report contains a detailed summary of our submis-
sions to the Unsupervised Anomalous Sound Detection under Do-
main Shifted Conditions Task for Machine Condition Monitoring
of the IEEE AASP Challenge on Detection and Classification of
Acoustic Scenes and Events 2021 (DCASE). Our goal was to learn
out-of-distribution (OOD) detectors without access to OOD data,
i.e., we trained only on recordings of undamaged machines. To
this end, we employed a range of popular unsupervised anomaly
detection methods based on auxiliary classification, density esti-
mation, and reconstruction error. OOD detectors were trained for
each of the seven machine categories included in the development
dataset. We then showed that the OOD detectors’ performance was
enhanced by utilizing metadata labels and other machines’ regular
sounds as proxy outliers. To further improve detection performance
under domain-shifted conditions, we fine-tuned the auxiliary classi-
fiers to semantically align the hidden representations of source and
target domain, using the limited target domain data. In addition to
this technical description, we release our complete source code to
make our submission fully reproducible 1.

Index Terms— Machine Condition Monitoring, Out-of-
Distribution Detection, Domain Adaptation, DCASE2021

1. INTRODUCTION

Out-Of-Distribution (OOD) detection aims to detect data points
that deviate from a pre-defined set of typical examples. The general
framework of OOD detection has many applications, such as
monitoring the health status of a patient or detecting fraudulent
financial transaction patterns. In this work, we deal with Unsuper-
vised Machine Condition Monitoring (MCM) for the IEEE AASP
Challenge on Detection and Classification of Acoustic Scenes and
Events 2021 (DCASE) [1]. The main objective of this task was to
learn a model from typical machine sounds capable of detecting
machine breakdowns.

To develop such a model, the task organizers provided a de-
velopment dataset containing typical recordings of seven different
machine types - fan, pump, slider, valve, toy car, and toy train [2, 3].
The dataset contains six different machine instances per machine
type, and each recording in this dataset is labeled the machine’s

1https://github.com/OptimusPrimus/dcase2021 task2

identity (labels 1-6; similar to a serial number). Additionally to
the development set, a test set with normal and anomalous sounds
for all machine identities and all machine types was provided for
model selection and submission ranking. The anomaly labels of
test recordings were only given for machine instances 1-3 of each
machine type. The test recordings of the remaining three machine
instances per machine type (4-6) will be used to rank submissions,
and thus no OOD labels were provided. Participants were not
permitted to use the test data for training.

Another major challenge of this year’s task is the presence
of a domain shift in the test data, meaning that a part of the test
data was not recorded under the same conditions as the training
data. These condition shifts include differences in operation speed,
machine load, environmental noise, etc. The authors provided
three examples of undamaged machines per domain shift in the
development set for adjusting the OOD detectors. There are six
possible domain shifts per machine type.

This technical report has been organized in the following way:
First, we will describe the methods used for anomaly detection and
domain adaptation. Then we will give a detailed account of the
conducted experiments. Finally, we will briefly state the results and
explain the systems used to obtain the submitted predictions.

2. PROPOSED SYSTEMS

We will use x ∈ X to denote inputs to the model and y ∈ {1, . . . C}
the denote corresponding machine identity labels (C = 6). We
use superscripts to indicate whether samples are drawn from the in-
distribution or the proxy outlier distribution, i.e.,Din andDPO , re-
spectively. Furthermore, we will use subscripts to indicate whether
samples are from the source or target domain, i.e., Ds and Dt, re-
spectively.

2.1. Auxiliary Classification Task

Prior work [4] found that classifiers predicts in-distribution exam-
ples more confidently than OOD examples and, hence, use the neg-
ative maximum softmax probabilities of an auxiliary classifier as
anomaly scores.

Anmp(x, y) := −maxyfy(x) (1)

https://github.com/OptimusPrimus/dcase2021_task2
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Here f is an auxiliary classifier and fy is the predicted class prob-
ability for class y. Potential prediction targets for such auxiliary
classifiers are metadata labels; other approaches use self-supervised
prediction targets such as the degree of augmentation performed on
the input [5].

For our submission, we trained separate auxiliary classifiers
per machine type to predict a machine’s identity from Mel-
spectrograms. We trained them to minimize the cross entropy loss
Lclf :

Lclf = E(x,y)∼Din [ −logfy(x) ]

Since the actual machine identity labels are given in both the
development and evaluation set, we used the negative probability of
the true class instead of Equation 1 as anomaly score:

Antp(x, y) := −fy(x)

A major advantage of using auxiliary classifiers is that it
allowed us to build upon existing systems for audio classification,
such as [6].

We also augmented the machine recordings by convexly com-
bining random pairs of raw audio recordings and their one-hot en-
coded labels. This procedure is similar to Mix-Up [7] and was pro-
posed as a method to synthesize new machine identities for MCM
by [8]. As this method did not enhance the detection performance
in general, we only applied it to the OOD detector for valves.

2.2. Density Estimation

Density estimators construct a model of the true underlying prob-
ability density p(x) from in-distribution data and thus offer a nat-
ural way to assess the typicality of examples via log probability
estimates. A straightforward way to employ density models for
OOD detection is to utilize the negative log probabilities as anomaly
scores. In our work, we employed Masked Autoencoder for Distri-
bution Estimation (MADE) [9] and Masked Autoregressive Flows
(MAF) [10] because they allow for rapid evaluation of log proba-
bilities. We again trained one density model for each of the seven
machine types. Motivated by [11], we additionally made use of the
available labels by conditioning the density models on the machine
identity, because we hoped that additional information might lead
to more precise probability estimates. We trained our models to
maximize the log likelihood on the normal data:

Ldensity = −E(x,y)∼Din [ log p(x | y) ]

Furthermore, we used the negative log probabilities as anomaly
scores:

Adenstiy(x, y) := −log p(x | y)

2.3. Reconstruction Error

Reconstruction-error-based OOD methods are trained to recon-
struct the in-distribution data from a compressed representation.
These methods assume that the models will not generalize to
novel patterns and thus fail to reconstruct OOD examples. Our
reconstruction-error-based system builds upon the DCASE2021 au-
toencoder baseline method and enhances it by conditioning the au-
toencoders on the machine identity. We trained our autoencoders g
to minimize the reconstruction error:

Lrec = E(x,y)∼Din [ ‖x− g(x, y)‖2 ]

Anomaly score were computed based on the reconstruction error:

Arec(x, y) := ‖x− g(x, y)‖2

2.4. Proxy Outlier Loss

Recent work [12] proposed leveraging auxiliary databases not
related to the anomaly detection task at hand to improve the
performance of various existing anomaly detection systems, a
method that was coined outlier exposure. Analogously, we found
that training binary classifiers to distinguish between proxy outliers
and normal machine sounds considerably outperforms density
estimation and reconstruction error baselines [13]. This work
will show that similar strategies can be adopted to improve the
previously introduced OOD methods for MCM with proxy outliers.
As all of our models were trained for a specific machine type, the
normal sounds of all other machines can be used as proxy outliers.

Similar to [12], we applied distinct strategies to integrate proxy
outliers in the training procedure of the previously proposed OOD
detectors. For the auxiliary classification-based methods, we en-
couraged the classifier f to provide uncertain predictions for proxy
outlier examples by enforcing a close-to-uniform class probability
distribution via the cross-entropy loss H:

LPO,clf = E(x)∼DPO [ H(U , f(x)) ]

where U is the uniform distribution.

We used a margin ranking loss for the density estimation and
reconstruction-error-based models to ensure that the proxy outliers
receive a lower log probability and a higher reconstruction error,
respectively. We compute the margin loss between a normal sample
(x, y) and a proxy outlier (x′, y′) via:

margin(x, y, x′, y′) = max{0,m+A(x′, y′)−A(x, y)}

The margin ranking loss is then computed as follows:

LPO,rank = E(x,y)∼Din

[
E(x′,y′)∼DPO [ margin(x, y, x′, y′) ]

]
As these methods require a conditioning label y′ for the proxy

outliers, we randomly choose one from {1, . . . , 6}. Additionally,
we expect the conditional models to give a lower log probability
or higher reconstruction error when conditioned on the wrong
machine identity. However, this is not the case in general, as we
will show in the experiment section, and we, therefore, enforced
this property by adding in-distribution examples with randomly
altered machine identity labels to the proxy outlier set.

When jointly training the OOD detectors with their primary loss
and outlier exposure, we use a weight λ to control the influence of
the proxy outliers.

2.5. Contrastive Semantic Alignment

A major challenge of this year’s MCM task was the domain shift
between training and test data and the limited target domain exam-
ples available for training. The method we employ is based on the
contrastive semantic alignment loss proposed by Motiian et al. [14].
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In particular, we fine-tuned our auxiliary classifiers to semantically
align the hidden representations φ of source and target domain by
minimizing the pairwise distance between examples of the same
class but from different domains:

Lsem =

C∑
y=1

E(x,x′)∼Ds|y,Dt|y

[ ∥∥φ(x)− φ(x′)
∥∥2 ]

Ds|y and Dt|y are source and target distribution for a specific ma-
chine identity y. Simultaneously, we enforced a margin between
the hidden representation of examples from different classes and
different domains to preserve class separability.

Lcont =

C∑
y=1

E(x,x′)∼Ds|y,Dt|¬y

[
max{0, n+

∥∥φ(x′)− φ(x)
∥∥}2 ]

Dt|¬y are samples from the target domain which are not form class
y. For fine-tuning, we created a convex combination of the domain
adaptation loss and the previously introduces losses:

Lft = α ·
(
Lclf + λ · LPO,clf

)
+ (1− α) ·

(
Lsem + Lcont

)
3. EXPERIMENTS

We conducted a series of experiments to determine the best config-
uration for our submission. First, we trained all previously men-
tioned OOD detection methods (Sections 2.1, 2.2 and 2.3) for each
machine type and without outlier exposure to establish a baseline.
Then, we included proxy outliers in the training procedure as de-
scribed in section 2.4. For the auxiliary-classification-based OOD
method, we used the sounds of other machines as proxy outliers.
For the conditional models (density estimators and autoencoders),
we conducted experiments with two proxy outlier sets: The first
one contained only sounds of the same machine with false machine
identity labels. The second proxy outlier set additionally contained
the sounds of all other machines. In our final experiment, we fine-
tuned the best auxiliary classifier for each machine type to account
for the domain shift in the test data. The following sections give a
detailed account of the network architectures, audio prepossessing,
and training procedure.

3.1. Network Architecture

As auxiliary classifier, we chose the model architecture introduced
by Koutini et al. [6], a receptive-field-regularized, fully convolu-
tional, residual network (ResNet) [15], which has been successfully
adopted for various audio-related classification tasks [16, 17]. We
tuned the receptive field such that the initial anomaly detection
performance across all machine types without outlier exposure was
maximized. The exact architecture of the ResNet can be found in
our GitHub repository.

Our implementation of MAF and MADE is based on a public
GitHub repository2. Based on the results reported in [11], we used
MAFs with four autoregressive blocks, one hidden layer per block
and 2048 units per hidden layer. Similarly, we use MADEs with

2https://github.com/kamenbliznashki/normalizing flows

four hidden layers and 2048 units per layer.

The conditional autoencoder matches the architecture of the
DCASE autoencoder baseline [1]. We condition each layer of the
autoencoder on the machine identity label by adding the output of a
learnable linear projection of the one-hot encoded label to the out-
put after applying the non-linearity.

3.2. Audio Preprocessings

Following the DCASE 2021 Challenge task 2 baseline system [1],
we re-sampled the audio signals to 16000Hz and computed a
mono-channel Short Time Fourier Transform using 1024-sample
windows and a hop-size of 512 samples. We weighted the resulting
power spectrogram with a Mel-scaled filterbank of 128 filters and
applied the logarithm to dampen large outliers.

3.3. Training

We trained the auxiliary classification on entire 10-second audio
clips; the density estimators and the autoencoder were trained on
5-frame snippets. All models were trained only on the source
domain data with the Adam update rule [18] with β1 = 0.9 and
β2 = 0.99. We used batch updates with 14 and 512 examples
for the auxiliary classifiers and other methods, respectively. We
doubled the batch size for training with proxy outliers and stratified
the batches to contain equal numbers of in-distribution and OOD
samples. During one epoch, we iterate over all normal samples;
proxy outliers were drawn randomly. We set the initial learning
rate to 10−4, kept it constant for 30 epoch, linearly decayed it to
10−5 over a period of 60 epochs, and continued training for ten
more epochs. To weight the PO loss, we use λ = 0.5 for the
auxiliary-classifier based methods and λ = 1.0 for the margin
ranking loss based methods. The minimal margin is set tom = 0.5.

For fine-tuning the auxiliary classifier, we randomly sampled
batches of 14 target domain examples and resumed training for
three epochs with the learning kept steady at 10−5. We apply the
congestive semantic loss on the hidden representations after the last
stage. α = 0.9 and n = 2.0 were chosen based on grid search.

3.4. Prediction

To obtain the anomaly score from the auxiliary classifiers, we in-
serted the whole 10-second audio segments and used the negative
probability of the true class as an anomaly score. For the other OOD
detectors, we first obtained the anomaly score for each 5-frame Mel-
spectrogram segment with a hop size of 1 and then averaged the
scores over the whole 10-second recording.

3.5. Evaluation

We evaluate our models with the Ω-score used for ranking submis-
sions. The Ω-score is defined as the harmonic mean (hm) of the
AUC and pAUC scores over all the machine types M, machine
identities C, and domains D:

Ω := hm({AUCj,i,d, pAUCj,i,d | j ∈M, i ∈ C, d ∈ D}) (2)

https://github.com/kamenbliznashki/normalizing_flows
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fan gearbox pump slider toy car toy train valve
Method PO Ω Ds Dt Ds Dt Ds Dt Ds Dt Ds Dt Ds Dt Ds Dt Ds Dt

CLF - .648 .715 .593 .705 .645 .656 .626 .743 .676 .819 .580 .627 .596 .784 .482 .711 .589
CLF all .667 .750 .600 .839 .644 .676 .644 .760 .639 .811 .540 .646 .696 .780 .493 .778 .597
CLF-DA all .692 .747 .644 .831 .698 .699 .654 .763 .682 .800 .611 .648 .727 .724 .527 .801 .657
MAF - .581 .615 .550 .606 .575 .578 .629 .679 .569 .707 .542 .627 .529 .595 .513 .542 .514
MAF same .616 .663 .576 .695 .673 .639 .644 .699 .640 .739 .540 .663 .556 .697 .499 .545 .528
MAF all .615 .656 .578 .775 .710 .552 .569 .726 .623 .750 .574 .666 .580 .666 .496 .542 .537
MADE - .584 .612 .558 .611 .583 .587 .637 .669 .552 .696 .559 .629 .537 .594 .535 .530 .516
MADE same .618 .662 .580 .699 .667 .635 .644 .682 .611 .743 .546 .688 .575 .683 .518 .544 .531
MADE all .614 .652 .580 .771 .704 .549 .574 .714 .597 .752 .586 .663 .585 .652 .511 .542 .538
AE - .567 .589 .547 .614 .577 .569 .615 .629 .538 .652 .550 .571 .537 .599 .521 .511 .506
AE same .605 .641 .573 .707 .679 .594 .617 .670 .610 .712 .561 .644 .567 .671 .500 .530 .517
AE all .604 .636 .575 .774 .700 .531 .558 .706 .611 .730 .583 .621 .554 .641 .525 .534 .529
BL-MN - .582 .606 .559 .633 .615 .655 .607 .622 .573 .654 .521 .571 .558 .588 .507 .539 .551
BL-AE - .572 .600 .547 .591 .567 .564 .610 .638 .530 .670 .557 .594 .547 .643 .519 .524 .514

Table 1: Experiment results overview. The Ω-score is described in Section 3.5. Other reported scores are computed accordingly over subsets
of the test set. Proxy outlier sets ’same’ and ’all’ are detailed in Section 3.

We report the results for machine instances i ∈ {1, 2, 3} in
the results section; scores for the remaining machine instances
i ∈ {4, 5, 6} will be used by the task organizers to rank the
submissions.

4. RESULTS

A comprehensive overview of the results is given in Table 1. When
comparing the conditional (AE) and unconditional autoencoders
(Bl-AE), we observe no notable benefit of conditioning on the
machine identity labels for anomaly detection. However, addition-
ally using recordings from the same machine type with randomly
altered labels as proxy outliers improved the performance in the
source domain for every machine type compared across all condi-
tional OOD methods. A similar trend can be observed in the target
domain. Adding the remaining machines’ normal sound to the
proxy outlier set led to a notable increase in detection performance
for some machine types (e.g. MAF fan) while worsening the
detection performance for others (e.g. MAF gearbox).

We observe a similar trend for the auxiliary-classifier-based
methods: While overall, the detection performance improved
compared to the baseline when training with outlier exposure
(see CLF fan), for some machines, the performance in the source
domain worsend slightly (e.g. CLF toy train). Larger deteriorations
can be observed in the target domain (e.g.. CLF pump).

After fine-tuning the auxiliary classifiers with the contrastive
semantic alignment loss, the detection performance on the target
domain test samples increased for all machine types (cf. Table 1,
CLF-DA).

4.1. Submissions

Based on the previous results, our predictions for the secret test set
were created using the following systems:

• Submission 1 (MADE): We selected the best MADE model
for each machine type according to the results in Table 1 and
used them to create predictions in both the source and target
domain.

• Submission 2 (MAF): We picked the best MAF model for each
machine type according to the results in Table 1 and used them
to create predictions in both the source and target domain.

• Submission 3 (ResNet): We choose the best auxiliary classi-
fier for each machine type in the source domain according to
the results in Table 1 and used them to create predictions in the
source domain. We then fine-tuned these classifiers using the
contrastive semantic alignment loss and used them to obtain
predictions for the target domain.

• Submission 4 (Ensemble): We normalize the outputs of all
our systems for each machine instance separately by scaling
and shifting the outputs with the mean and standard deviation
computed over the anomaly scores of the training data. These
normalized scores are then combined using a weighted aver-
age.

5. CONCLUSION

In this work, we used a variety of OOD detection methods to estab-
lish baselines and showed that outlier exposure improved the detec-
tion performance of these methods. Our experiments also showed
that conditioning on machine identity labels does not necessarily
yield better detection results. To solve this issue, we introduced
an additional loss which ensures that in-distribution examples with
wrong labels are ranked accordingly. Finally, to account for the
domain shift present in training, we fine-tuned our OOD detectors
based on auxiliary classifiers with a contrastive semantic domain
alignment loss, which led to increased detection performance in the
target domain. Finally, we submitted the outputs of four systems to
the DCASE challenge, three based on single system predictions and
a combination of the methods introduced in this work.
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