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ABSTRACT

In this report, we present our method for Detection and Classifi-
cation of Acoustic Scenes and Events (DCASE) 2021 challenge
task 3: Sound Event Localization and Detection with Directional
Interference (SELDDI). In this paper, we propose a method based
on Adaptive Hybrid Convolution (AHConv) and multi-scale feature
extractor. The square convolution shares the weight in each T-F bin
of the fixed area in feature map, that is limited. In order to address
this problem, we propose a AHConv mechanism instead of square
convolution to obtain time and frequency dependencies. We also
explored multi-scale feature extractor which can integrate informa-
tion from very local to exponentially large receptive field within the
block. In order to adaptive recalibrate the feature maps after convo-
lutional operation, we designed an adaptive attention block which
are largely embodied in the AHConv. On TAU-NIGENS Spatial
Sound Events 2021 development dataset, our systems demonstrate
a significant improvement over the baseline system. Only the first-
order Ambisonics (FOA) dataset was considered in this experiment.

Index Terms— DCASE2021, Sound source localization,
Sound event detection, Adaptive hybrid convolution

1. INTRODUCTION

Sound Event Localization and Detection with Directional Interfer-
ence (SELDDI) is a combined task of recognizing individual sound
events of specific classes, detecting their temporal activity, and es-
timating their location during it, in the presence of interfering di-
rectional events not belonging to the target classes and spatial am-
bient noise. In realistic aural environments, there are numerous co-
occurring different sounds emitted from the sources distributed in
space. Even humans cannot all correctly identify and locate mul-
tiple sources of sound, so it is very challenging for machines. To
solve the SELDDI problem, two key issues denoted as sound event
detection (SED) [1–5] and sound source localization (SSL) [6–13]
have to be addressed.

The methodology proposed in this paper is based on the SELD-
Net proposed by Adavanne et al [14]. A convolutional recurrent
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neural network (CRNN) model was proposed for joint SSL and
SED of multiple overlapping sound events in three-dimensional
(3D) space. The phase and magnitude of spectrogram were cal-
culated separately on each audio channel as input features. In or-
der to learn both inter-channel and intra-channel features, the input
was fed through three consecutive convolutional blocks. Bidirec-
tional Gate Recurrent Unit (BiGRU) was used for temporal context
information learning. The output of the BiGRU is fed to two par-
allel branches of fully-connected blocks. The classes for all sound
events would be output on each time-frame, and the sound source
would be located in the three-dimensional Cartesian coordinate sys-
tem. Making as a multi-output regression task can help to estimate
in a continuous space.

Compared with DCASE2020 challenge task 3, The main dif-
ference is the emulation of scene recordings with a more natural
temporal distribution of target events and, more importantly, the in-
clusion of directional interferences, meaning sound events out of the
target classes that are also point-like in nature. For each reverberant
environment and every emulated recording, Interferences are spa-
tialized in the same way as the target events, resulting in recordings
that are more challenging and closer to real-life conditions. The
other difference is the elimination of the dedicated event classifica-
tion output branch, by adopting the ACCDOA training target which
unifies the localization and classification losses in a homogenous
regression vector loss, pioneered by Shimada et al [15].

In this paper, We also propose a CRNN framework based on
SELD-Net architecture. We adopt Adaptive Hybrid Convolution
(AHConv) mechanism and multi-scale feature extractor to handle
feature learning insufficiently. The logmel spectrogram and normal-
ized acoustic intensity vector are extracted as input features. Instead
of conventional symmetric convolution, the AHConv structure is
design to process more and richer spatial features and increase fea-
ture diversity by asymmetric convolution. we adopt a multi-scale
feature extracting strategy, in which the strategy was designed to
capture the longer temporal context information than the conven-
tional convolutions. Moreover, the parallel structure is applied in
Adaptive attention block, which adaptive mitigates interference be-
tween the channel-wise and time-frequency-wise by exploring two
different branches. Additionally, the Adaptive attention block can
also promote the robustness when a single branch is disturbed by
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Figure 1: The overall of our proposed method.

the ambient noise without the presence of sound events. Further-
more, we conduct experiments on development dataset to verify the
effectiveness of our proposed method.

This paper is organized as follow: we will introduce the pro-
posed method in Section II. The experiment setup will be stated
in Section III. The development results compared with the baseline
method will be described in Section IV. Finally, we draw a conclu-
sions and future work in Section V.

2. PROPOSED METHOD

We proposed a method with Adaptive Hybrid Convolution (AH-
Conv) and multi-scale feature extractor which achieves great per-
formance to deal with SELDDI in the noisy and reverberant scenes.
The proposed network can predict the sound event classes active
for each of the input frames along with their respective spatial loca-
tion, and produce the temporal activity and DOA trajectory for each
sound event class. The network diagram is presented in Fig.1. The
input to the method is the multichannel audio. The logmel spectro-
gram and sound intensity vector (SIV) are extracted as the input fea-
tures of the network. The multi-scale feature extractor as depicted
in 4, then followed five AHConv blocks and five average pooling
layers. After that, the time dimension is downsampled 5 times, and
the frequency dimension is downbsampled 32 times. Then, Bidirec-
tional Gated Recurrent Unit (Bi-GRU) is used to learn the temporal
context information. This is followed by fully connected layers.

2.1. Multi-scale Feature Extractor

Among the various CNN architectures, if the network contains
shorter connections between layers close to the input and those
close to the output, it can be substantially deeper, more accurate,
and efficient to train, to further improve the information flow be-
tween layers [16]. In this work, we combine the advantages of
DenseNet and dilated convolution, and propose a extractor called
multi-scale feature extractor. To properly combine DenseNet with
the dilated convolution [17], we propose a multi-scale feature ex-
tractor that has a multiple dilation factor within a single layer. The
dilation factor depends on which skip connection the channels come

from, as shown in Fig. 2. The output of each dilated layer are
fed into a Adaptive attention block. The Adaptive attention block
reweigh the information of channel-wise and of spatial-wise dimen-
sion. That can enhance the important features and weaken the less
important features. The outputs of the lth layer xl receives the
feature-maps of all preceding layers express as:

Conv2d(dilation_rate=1, 2)

Conv2d(dilation_rate=1)

Conv2d(dilation_rate=1, 2 , 4)

Adaptive attention block

Figure 2: Multi-scale feature extractor

xl = ψ([x0, x1, x2, ...xl−1]⊛ kd=1,2,...2l−1

l ) (1)

where [x0, x1, x2, ...xl−1 denotes the concatenation of the feature
maps produced in layers 0, ...l − 1, ψ is a nonlinear transforma-
tion consisting of batch normalization (BN) followed by ReLU and
dilated convolution with the kl kernel, ⊛ denotes convolution oper-
ation and d is the dilated rate in each layer.

2.2. Adaptive Hybrid Convolution

Some of the prior works [18, 19] has shown that a standard square
convolutional layer with a filter size of k × k can be factorized as
a sequence of two layers with k × 1 and 1 × k filters to reduce
network complexity and lighten the computational burden. This
asymmetrical convolutional structure is better than a square convo-
lutional structure in processing more and richer spatial features and
increasing feature diversity. In addition, asymmetric convolution
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Figure 3: Adaptive Hybrid Convolution (AHConv). Each color rep-
resents a different convolution kernel, and the squares represent the
convolution graph.

can obtain faster calculation speed and smaller parameter amount
while ensuring performance. The weight learning of the square
convolution relies on the network, but is limited by the size of filter.
Therefore, the square convolution are not capture fine-grained time-
frequency features. In order to address this problem, we propose a
hybrid convolution mechanism based on the asymmetric convolu-
tional structure, as shown in Fig. 3. That is, a parallel structure is
composed of a filter size 1 × 3 and 1× 5 for time frames, and a filter
size 3 × 1 and 5 × 1 for frequency bin, thus the time dependency
and frequency dependency are capture respectively.

2.3. Adaptive Attention block

We design an adaptive attention block as seen in Fig 4. The up
half part denotes the path of channel attention (CA) [20], and the
lower half part the time-frequency attention (TFA) [21]. In adap-
tive attention block, different weights are applied to the channel
and the time-frequency (TF) domain, which can guide the network
to pay different attention to the characteristics of channel-wise and
time-frequency-wise. The features of each part will undergo a two-
dimensional convolution with a (1 × 1) kernel size. The convolution
will learn the weight of each part and add adaptively.

3. EXPERIMENT SETUP

3.1. Dataset

Development set of TAU-NIGENS Spatial Sound Events 2021 has
two types of data, one is 4 channel directional microphone array
(MIC) from tetrahedral array and the other one is first-order am-
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Figure 4: Adaptive attention block.

bisonic (FOA) data. We used the FOA format for the challenge.
The SELD development dataset consists of 600 one-minute au-
dio clips divided into training, validation, and test set of size 400,
100, and 100 clips, respectively. The development dataset are dis-
tributed between 12 classes of alarm, crying baby, crash, barking
dog, footsteps, knocking on door, female speech, male speech, fe-
male scream, male scream, ringing phone and piano. Additionally,
dry recordings of disparate sounds not belonging to any of those
classes are also spatialized in the same way to serve as directional
interference. The sounds are sourced from the running engine, burn-
ing fire, and general classes of NIGENS database.

3.2. Evaluation metrics

The performance of our proposed model is evaluated by the individ-
ual metrics for SED task and SSL task. Standard polyphonic SED
metrics, F-score (F1) and error rate (ER) across segments of one
second without overlapping are utilized [22]. The DOA estimation
in SSL task was evaluated using frame-wise metrics [23] of DOA
error (DE) and frame recall (FR). Considering that a TP is predicted
only when the spatial error for the detected event is within the given
threshold of 20◦ deviate from the reference, ER and F replaced with
ER20◦ and F20◦ . Classification-dependent localization metrics are
computed only across each class, instead of across all outputs, DE
and FR replaced with LECD and LRCD . A more detailed descrip-
tion can be obtained in [23, 24].

3.3. Training procedure

The sampling frequency was used at 24 kHz in our method. STFT
was applied with configurations of 20 ms frame length and 10 ms
frame hop. The input frame length is 1,024 frames. We use a batch
size of 64. Moreover, to ensure a fair comparison, all models were
trained for 500 epochs with the Adam optimizer of the same ini-
tialized parameters. An early stopping mechanism is used to avoid
overfitting during training, where the training is stopped if no im-
provements on validation split for 50 epochs.

3.4. Our challenge submissions

• Sun_AIAL-XJU_task3_1: Proposed method trained using the
same training splits as the baseline method.

• Sun_AIAL-XJU_task3_2: Proposed method trained using the
five splits development dataset.
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Table 1: The performance comparison for different methods on the
development dataset

Method ER20◦ F20◦ (%) LECD LRCD(%)

DCASE2021baseline 0.69 33.9 24.1 43.9

Sun_AIAL-XJU_task3_1 0.57 52.6 19.6 58.1

Sun_AIAL-XJU_task3_2 0.52 55.3 19.1 60.9

4. RESULT AND DISCUSSION

Our proposed model result outperform the DCASE 2021 base-
line model, Sun_AIAL-XJU_task3_1 achieve the improvement
of 0.12, 18.7%, 4.5 and 14.2% respectively, and Sun_AIAL-
XJU_task3_2 achieve the improvement of 0.17, 21.4%, 5 and 17%
respectively. Sun_AIAL-XJU_task3_2 had 100 more training data
than Sun_AIAL-XJU_task3_1, and improved performance 0.05,
2.7%, 0.5, 2.8% respectively. This proves that our model still has
great potential to grow with the increase of training data.

5. CONCLUSIONS

In this paper, we propose a SELDDI method based on Adaptive
Hybrid Convolution (AHConv) and multi-scale feature extractor.
AHConv was design to capture the time and the frequency depen-
dencies. Multi-scale feature extractor was designed to extract the
multi-scale feature maps. We also proposed an adaptive attention
block embodied in AHConv. The results on the development dataset
show that our proposed method outperforms the baseline method on
four evaluation metrics. Next we will introduce data augmentation
method to improve the performance of the model.
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