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ABSTRACT

This paper describes our submission to the DCASE 2021 chal-
lenge Task 2 ”Unsupervised Detection of Anomalous Sounds for
Machine Condition Monitoring under Domain Shifted Conditions.”
Acoustic-based machine condition monitoring is a challenging task
with a very unbalanced training dataset. In this submission, we pro-
pose two methods for anomaly detection and then their combina-
tion. The first method is based on feature extractor using Siamese
Network with triplet loss and KNN for the actual anomaly detec-
tion. The second method uses very small auto-encoder on top of
the OpenL3 embeddings. The combination of these two approaches
selects the best performing method for each machine type.

This is a novel approach and have not been used by NeuronSW
SE so far.

Index Terms— Predictive Maintenance, Anomaly Detection,
Siamese Network, Auto-encoder, OpenL3

1. INTRODUCTION

Machine condition monitoring is an essential component of predic-
tive maintenance. It allows to schedule maintenance work to fix
machine problems in the earliest stages and thus reducing mainte-
nance costs and preventing consequential damages. Acoustic emis-
sion monitoring can be used for machine condition analysis and
prognosis. ISO 220961 suggests that the nature of acoustic emis-
sions can be used even without an understanding of the operating
mechanics of the monitored machine. The recent progress in AI
allows us to create an automatic machine condition monitoring sys-
tem. To allow a large scale, we need a system that does not re-
quire the knowledge of the monitored system’s operation mechan-
ics. Nevertheless, it is impossible to collect all possible failures for
a newly monitored machine without such knowledge. In practice,
it is exceptional to get even any example of a failed state. Unfor-
tunately, most of the recently developed AI methods require a huge
amount of well-labeled examples, which makes them unusable for
the task of machine condition monitoring. Task of learning from a
few or even just one sample is called a few or one-shot learning. On
the other hand, anomaly detection methods seem suitable for this
problem as it lacks the samples representing the failure modes of
the monitored machines.

We have experimented with two different approaches. The first
one is based on Siamese Network[1] and KNN anomaly detector
and the second one on OpenL3 embeddings and auto-encoder.

1https://www.sis.se/api/document/preview/908883/

2. SIAMESE NETWORK WITH KNN

This approach can be divided into three phases: (1) converting au-
dio to spectrograms, (2) training Siamese Network as a classifier,
and (3) train KNN, using Siamese Network encoder, for anomaly
detection. We will describe each part separately.

2.1. Audio Transformation

First, we transform all audio samples into spectrograms us-
ing mel-spectrogram using Librosa python package. We used
method melspectrogram with parameters as follows: n fft=4096,
hop length=2048, n mels=128, power=2.0 and fmin=10. Finally,
values were converted to decibels and standardized.

2.2. Siamese Network

We used Siamese Network with triplet-loss introduced in [2]. The
network is essentially an encoder that transforms the inputs into
multi-dimensional latent space using the same weights. However,
the network is trained to encode input data in such a way, that differ-
ent input classes are distant in the latent space. To this end, network
encodes three images called anchor (A), positive (P) and negative
(N). Anchor and positive must come from the same class while neg-
ative must come from a different class then anchor. The network
is trained to minimize distance between A and P, while maximize
distance between A and N. Formally, loss function is as follows (it
is slightly different than in the original paper):

L(A,P,N) = max(D(A,P )−D(A,N +margin,D(A,P ))

where D(x, y) = ‖x− y‖2 is euclidean distance and α is a margin
between positive and negative samples, in our case α = 10.

During the training, random triplets are generated following
the mentioned rule. For this challenge, we considered combina-
tion of machine type and section as a class (e.g. slider id 00 and
slider id 01 belongs to different classes).

The network architecture is as follows:

• Input (131x79)
• Conv (64 @ 9x9) + BN + MaxPooling2D + ReLU
• Conv (128 @ 7x7) + BN + MaxPooling2D + ReLU
• Conv (256 @ 5x5) + BN + MaxPooling2D + ReLU
• Conv (512 @ 3x3) + BN + MaxPooling2D + ReLU
• Dense (512) + ReLU
• Dense (256) + ReLU
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• Output (256)

Training From the training dataset we used 95% of the data
of each class to generate 1 million triplets to train Siamese Net-
work. After the training stagnated (patience=15 epochs), we contin-
ued with fine-tune training of seven individual Siamese Networks,
one per each machine type (fan, gearbox, pump, slider, valve, Toy-
Car, and ToyTrain). Here, each classifier is trained to distinguish
id’s of a specific machine type.

2.2.1. Submission 1

Our first submission is the results of Siamese network’s before fine-
tunning.

2.2.2. Submission 2

In our second submission is the Siamese Network after fine-tuning.

2.3. KNN Anomaly Detection

Finally, once the Siamese network is trained, we use it as an en-
coder to tranform data into latent space, upon which KNN is trained.
Standard KNN for anomaly detection [3] is trained using PyOD 2

library. To train KNN we use the default setting from PyOD with
n neighbors 5, method large, radius 1.0, and leaf size 30.

3. OPENL3 WITH AUTO-ENCODER

Next approach we evaluated is based on pretrained OpenL3[4, 5]
embeddings with a small auto-encoder.

For our experiments we’ve choosed OpenL3 with the following
parameters:

• Input Representation: mel128
• Content Type: env
• Embedding Size: 512
• Hop Size: 0.1

Each 20 frames (corresponding to 2 seconds of audio) of
OpenL3 embeddings are averaged and the 512-dimensional output
is passed into auto-encoder. Since the embeddings are supposed to
be well preprocessed, the chosen auto-encoder is very small (33.6k
parameters):

• Input (512)
• Dense (32) + ReLU
• Dense (4) + ReLU
• Dense (32) + ReLU
• Dense (512)
• Output (512)

The anomaly score is then calculated as the average reconstruction
error over all aggregated frames of the audio sample.

4. RESULTS

To evaluate both approaches, we used Development data of
DCASE2021 Task-2 Challenge [6, 7, 8]. In Table 1 we summa-
rize the AUCs and pAUCs for p = 0.1 of all four submissions (for

2https://pyod.readthedocs.io/

Submis. 1 Submis. 2 Submis. 3
problem AUC pAUC AUC pAUC AUC pAUC

fan 54.4 52.6 62.1 58.3 57.8 51.9
gearbox 56.6 49.7 65.7 58.2 73.9 58.9

pump 60.1 52.6 62.4 57.0 56.9 53.5
slider 69.2 60.0 68.4 58.5 64.7 54.3
valve 63.7 57.7 74.5 64.6 55.1 52.1

ToyCar 54.1 50.5 60.5 55.0 74.1 58.2
ToyTrain 49.8 50.4 59.4 58.8 62.0 49.6

Average 57.7 53.1 64.4 58.5 62.0 54.1

Table 1: Harmonic means of AUCs and pAUCs on development
dataset. The Submission 4, which combines highlighted models,
scored average AUC: 67.8, and pAUC: 59.2

detailed results see Appendix). We can see that submissions 2 and 3
are suitable for different kind of domains (highlighted in the table)
and thus we decided to submit the fourth system choosing the best
method for each machine type. Specifically, submission 3 outper-
formed submission 2 in domains gearbox and ToyCar.

5. CONCLUSION

We have evaluated two different approaches, Siamese Network with
KNN and OpenL3 embeddings with AE. Their combination scored
average scored average AUC: 67.8 %, and pAUC: 59.2 %, and out-
performed the baseline AutoEncoder solution by 5.6 and 5.9 percent
points, respectively.
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Appendix
Detailed results for each class is shown in Table 2.
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Submis. 1 Submis. 2 Submis. 3
problem AUC pAUC AUC pAUC AUC pAUC
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fan-1 S 63.8 60.1 85.3 81.1 49.3 49.6
fan-1 T 58.9 54.2 89.5 77.1 48.6 48.3
fan-2 S 52.7 48.9 61.9 53.0 59.0 53.4
fan-2 T 51.9 55.7 50.7 52.0 60.0 51.3
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gearbox-2 T 54.9 47.7 68.6 59.7 72.9 59.5

pump-0 S 57.4 51.3 47.4 51.3 65.9 64.3
pump-0 T 54.0 50.7 53.1 51.2 58.1 50.9
pump-1 S 79.3 66.8 84.9 71.9 71.5 55.1
pump-1 T 65.0 48.9 81.9 59.3 36.8 47.6
pump-2 S 57.7 51.8 63.2 59.8 63.8 56.1
pump-2 T 53.6 49.8 61.6 53.1 59.6 50.3

slider-0 S 75.9 65.4 75.9 65.4 67.8 55.4
slider-0 T 63.2 53.1 63.2 53.1 63.3 51.9
slider-1 S 84.9 66.6 84.9 66.6 81.0 63.4
slider-1 T 65.3 56.2 65.3 56.2 56.0 51.1
slider-2 S 80.4 68.5 80.4 68.5 66.5 54.8
slider-2 T 55.0 54.0 55.0 54.0 58.9 50.8

valve-0 S 67.8 64.3 74.0 69.2 53.0 49.9
valve-0 T 64.6 57.2 80.4 69.4 45.3 49.2
valve-1 S 54.2 52.1 71.6 64.6 52.8 52.1
valve-1 T 62.4 54.2 68.7 54.6 71.2 60.8
valve-2 S 80.8 77.8 98.3 94.2 62.5 51.7
valve-2 T 58.6 48.8 63.1 51.2 53.0 50.3

ToyCar-0 S 48.4 50.9 61.5 61.5 79.1 59.8
ToyCar-0 T 55.2 49.6 60.2 52.7 59.1 53.5
ToyCar-1 S 49.0 48.8 56.5 52.5 72.9 58.1
ToyCar-1 T 51.6 49.2 59.4 55.1 83.0 64.2
ToyCar-2 S 62.4 53.8 67.4 57.1 85.3 60.1
ToyCar-2 T 61.1 51.0 58.8 52.0 73.5 54.9

ToyTrain-0 S 43.4 47.4 55.5 55.5 34.5 47.4
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ToyTrain-2 S 56.5 49.4 63.6 59.5 65.8 47.8
ToyTrain-2 T 54.7 51.5 62.3 59.8 54.7 50.3

Average 57.7 53.1 64.4 58.5 62.0 54.1

Table 2: Detailed results for each section, source(S) and target (T).
Maximal values in each row are highlighted.
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