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ABSTRACT

This paper presents our anomaly detection scheme for DCASE 2021
Challenge, using a Variational AutoEncoder (VAE) with a frame-
work of Interpolation Deep Neural Network (IDNN) and fine tun-
ing as an adaptation method. VAE is built using normal training
data for each machine, to predict a frame from its neighbor frames
just like IDNN. In addition, we involve a kind of high-pass filter
and a scheme to preserve particular frames or frequencies having
larger errors. Finally an anomaly score is calculated based on re-
construction error in VAE. We further apply fine tuning to target
data recorded in different settings, to adapt a model.

Index Terms— Variational autoencoder, interpolation deep
neural network, domain adaptation.

1. INTRODUCTION

Anomaly detection is a technique to detect abnormal data, using
statistics, machine learning and deep learning technology. Since
there are high demands to predict or detect any failure in indus-
trial fields, many researchers have devoted their efforts to accom-
plish a high-performance anomaly detection technique. This paper
reports our activities to DCASE 2021 Challenge Task 2: Unsuper-
vised Anomalous Sound Detection for Machine Condition Monitor-
ing under Domain Shifted Conditions [1].

In the anomaly detection field, an autoencoder is often adopted.
An autoencoder, that employs DL architecture, converts given data
into low-dimensional representations in an encoder part, followed
by reconstructing the original data from the vectors in a decoder
part. We build a model only using normal data, and compute an
error between given and reconstructed data as an anomaly score.
Since the model cannot well reconstruct anomaly data which are
not used for model training, higher error scores are observed for the
anomaly data.

In this work we focus on a Variational AutoEncoder (VAE) [2]
to model normal data. VAE is one of the autoencoders, in which
latent vectors obtained from an encoder should be observed based
on a Gaussian distribution. It is confirmed that this model works
well for machine sound data, on the other hand, it is not sure that
this approach can be still effective for the same machine data in
different settings or environments. In other words, we may need
domain adaptation to a VAE model.

We also employ an Interpolation Deep Neural Network (IDNN)
framework [3] in our scheme. The technique has been success-
fully chosen in several anomaly detection tasks, including the last
DCASE Challenge. IDNN tries to predict a frame from its neighbor

frames. Once the model is built using normal data, abnormal data
cannot be well predicted, resulting higher reconstruction error.

This paper explorers how to incorporate VAE and IDNN for
the anomaly detection challenge with high performance. We at
first measure an anomaly score by reconstruction error. Next, we
try to improve the score based on our preliminary investigation,
by employing a kind of high-pass filter and detecting periodic and
frequency-dependent abnormal sounds. In addition, we carry our
fine tuning as an adaptation method to improve detection accuracy
for anomaly data.

2. METHODOLOGY

2.1. Preprocessing

First, we split a 10-second audio clip into 313 frames, with a frame
length of 64ms and a frame shift of 32ms. In each frame, we sec-
ondly compute 128-dimensional log-scale mel-frequency power co-
efficients. For a particular frame, previous eight frames and follow-
ing eight frames are collected, to obtain a 16x128 matrix as an input
data to VAE.

2.2. VAE and IDNN

As mentioned, we chose VAE to obtain compact representations
from original data, or estimate anomaly scores by reconstructing
from the latent vectors. Here we also employ a strategy inspired by
IDNN. Fig 1 illustrates our VAE model. The model is designed to
predict a log-mel vector from its neighbor frames. Given the 16x128
input data, a 2D Convolutional Neural Network (CNN) is performed
as an encoder to obtain 256 feature maps each of which size is 1x8
(see also Fig. 1(b) ). By applying a Global Max Pooling (GMP), a
256-dimensional vector is subsequently calculated. GMP has been
widely used nowadays in many DNN architectures. We consider
each channel implies a particular pattern appeared in normal data,
hence, it is expected that applying GMP simply summarizes the
result. In addition, GMP can reduce model parameters compared to
conventional pooling models. We then compute mean and variance
variables by means of Feed Forward Neural Network (FFNN), to
obtain a 8-dimensional latent vector z.

To enhance the whole model, we employ two models in this
work. The first one is a 1D-CNN-based decoder shown in Fig.
1(c), followed by an additional convolution layer to predict the log-
mel vector. Another is a simple FFNN-based classifier, which esti-
mates a machine section. In the classifier, an accepted latent vector
is directly converted into classification outputs without any hidden
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Figure 1: Our VAE model.
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Figure 2: An example of reconstruction error visualization results.

layer. To optimize all parameters in these models, we adopt a mean-
square-error loss function for the decoder and a categorical-cross-
entropy loss function for the classifier.

We repeat the above process for each frame. Since we cannot
prepare the input data fir the beginning frames and ending frames,
we can obtain 297 predicted frames in one audio clip.

2.3. Anomaly score calculation
2.3.1. System I

There are several frameworks we can choose to estimate anomaly
scores. The most common approach is to measure a reconstruction
error, by comparing an estimated vector with the original one. Let
us denote original and reconstructed data by z(z, j) and y(z, j) in
an ¢-th frame (1 < ¢ < 297) at a j-th frequency bin (1 < 5 < 128),
respectively. The reconstruction error can be calculated as:
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Figure 3: A t-SNE visualization result of VAE latent vectors.

We can then carry out anomaly detection by comparing to a prede-
fined threshold.

2.3.2. System 2

We further investigated the data in order to achieve better perfor-
mance. First, we visualized the reconstruction error. Fig. 3 shows
an example of the reconstruction result from a Pump normal data
set. The horizontal axis indicates a frame index, and the vertical
one means a frequency bin. We can see some large errors in the
lower frequency part. Because we sometimes observed such the er-
rors in normal data, therefore, we thus cut off any error below the
particular frequency bin. This time we set the threshold bin as 20,
roughly equivalent to 450Hz.

In some machines such as Valve, we often have periodic sounds
in audio clips. To identify any anomaly, it may be good to firstly
calculate the error within a frame:

c 1 < o .02
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Table 1: AUC [%] of baseline and our systems.

Domain | System ToyCar ToyTrain fan gearbox pump slide rail valve
Baseline 67.98 71.74 66.11 62.58 71.26 78.19 54.59

Source | Systeml 62.26 75.85 68.00 61.99 65.09 75.89 57.41
System2 55.41 82.07 64.47 62.26 60.77 77.62 75.52
Baseline 58.39 54.25 61.96 70.94 56.04 60.12 52.89

Target System1 64.76 58.11 57.83 57.37 53.77 55.17 51.85
System2 58.58 64.82 57.20 60.07 50.09 60.44 51.35

Table 2: pAUC [%] of baseline and our systems.

Domain | System ToyCar ToyTrain fan gearbox pump slide rail valve
Baseline 53.08 59.79 53.64 51.90 58.52 59.30 50.70

Source | Systeml 52.77 57.84 55.03 52.07 57.66 58.17 51.01
System?2 50.52 63.66 52.33 52.76 55.75 64.05 59.00
Baseline 51.75 50.00 53.51 53.70 50.95 53.50 50.51

Target Systeml 52.77 51.01 53.15 51.22 50.35 50.79 50.70
System?2 52.33 53.10 53.42 51.68 49.96 54.25 50.66
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where NN is the total number of frames, i.e. N =297, and M is
the number of frequency bins, i.e. M =128. Similarly, if there is
a stationary anomaly noise caused by any failure, we can always
see the error in particular frequency bins. We thus also compute the
average among all the frames at each frequency bin:

Bf =+ > {0 ) vl )Y’ 3

We consider in such the above scenes choosing the whole average
of reconstruction error, represented in Eq.(1), is not appropriate.
We simply perform sorting to all E and E]R, and choose the top
K values, followed by summing them up as an anomaly score Fo.
Note that we set K as 15 in this paper.

2.4. Domain adaptation

In this challenge, for each machine and each section, a training data
set is prepared including 1,000-clip source-domain data and 3-clip
target-domain data only consisting of normal data [5] [6]. All the
source data are used for building a VAE model in our scheme. It is
thus expected to easily model the source data. On the other hand,
there may be a difficulty to correctly predict a latent vector in the
target domain. Therefore, before applying our method to the target
domain, we conduct fine tuning to the decoder and FFNNs by using
target data only.

To confirm this, we conducted visualization to source and target
z. Fig. 3 depicts a visualization result of ToyTrain Section02 using
t-SNE [4]. It is easily found that both distribution are quite different.
That means a model built from source data is hardly suitable for
target data to estimate anomaly score, and it indicates we need to
adapt a model.

3. RESULT

Table 1 shows Area Under Curve (AUC) results of the autoencoder-
based baseline [7] and our systems. Here we calculated a mean
score among the three sections (Section00, 01 and 02). Regarding
System 2, that is our improved method, improvements were ob-
served in ToyTrain and valve. Checking audio clips and results, we

found ToyTrain, slider rail and valve, in which our scheme was bet-
ter than or almost the same as the baseline, have periodic sounds. It
is considered that the approach to use top-K frame-by-frame error
is thus effective. In contrast, our method unfortunately could not
improve performance in fan, gearbox and pump. In audio clips of
these machines we can find stationary sounds, so we tried to deal
with frequency-dependent anomaly sounds. However, out system
could not detect some of failures because our autoencoder did not
sufficiently take care of the frequency domain. In terms of target
data, our systems could not achieve significant improvement except
ToyTrain. This might be caused because of the insufficient data
amount of adaptation. It was also observed that a variance of AUCs
became larger after fine tuning. These facts indicate that, in spite
that we carefully tried to design models and parameters as few as
possible, however, 3-clip target data might be too small for adapta-
tion.

Table 2 shows pAUC results. Different from Table 1, our sys-
tems achieved better performance than the baseline for source data
except ToyCar and pump. That indicates our systems can identify
normal data with lower false positive acceptance.
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