
Detection and Classification of Acoustic Scenes and Events 2021 Challenge

DATA AUGMENTATION AND CLASS-BASED ENSEMBLED CNN-CONFORMER
NETWORKS FOR SOUND EVENT LOCALIZATION AND DETECTION

Technical Report

Yuxuan Zhang, Shuo Wang, Zihao Li∗,
Kejian Guo, Shijin Chen, Yan Pang,

University of Chinese Academy of Sciences, Beijing 100049, China
∗ Corresponding email: lizihao183@mails.ucas.edu.cn

ABSTRACT
In this technical report, we describe the system participating in the
DCASE 2021, Task 3: Sound Event Localization and Detection
(SELD) challenge. We introduce Conformer block into the base-
line system to make better use of temporal context information for
the SELD task. To expand the official training dataset, we use Au-
dio Channel Swapping (ACS), Speed Perturbation (SP), and Time-
Frequency Masking (TFM) as augmentation techniques. In addi-
tion, we proposed a class-based ensemble method to attain a more
robust sound event detection (SED) and sound source localization
(SSL) estimation result for each sound event. After evaluating our
best-proposed system on DCASE 2021 Challenge Task 3 Devel-
opment Dataset, we approximately achieve 44% and 37% relative
improvements on the SELD scores, respectively.

Index Terms— Sound event localization and detection, data
augmentation, Conformer, model ensemble

1. INTRODUCTION

Sound event localization and detection (SELD) task aims to detect
individual sound events of specific classes and estimate their loca-
tions simultaneously [1]. SELD can be seen as a multitask learn-
ing task including sound event detection (SED) and sound source
localization (SSL). Similar to other DCASE tasks, neural-network
(NN)-based methods exhibit significant progress in the SELD re-
search area.

The baseline system in 2020 and a series of similar state-of-
the-art systems consist of a High-level Feature Representation mod-
ule and a Temporal Context Representation module which is fol-
lowed by two parallel branches contain two fully connected (FC)
layers, each performing individual SED and SSL subtasks [1, 2, 3].
The main difference between these systems is that the above two
modules are replaced by different NN architectures. In the SELD
task of DCASE 2021, the baseline system (called SELDnet) is no
longer a multitask learning system since it eliminates event classi-
fication output branch by setting training target as activity-coupled
Cartesian DOA (ACCDOA) representation [4]. This modification
improves SELD performance and reduces the network size in the
meanwhile.

The Conformer, firstly proposed in [5], has achieved excellent
results in many automatic speech recognition (ASR) competitions.
[6] combined Conformer and ResNet/Xception, and obtained the
state-of-the-art SELD performance. In this report, we introduce
the Conformer module into SELDnet firstly since its better capa-
bility of modeling the temporal dependencies than recurrent neural

network (RNN). To overcome the lack and unbalance of training
data, we utilize several data augmentation approaches, including
Audio Channel Swapping (ACS) [6], Speed Perturbation (SP) [7]
and Time-Frequency Masking (TFM) [8]. Finally, by assuming dif-
ferent architectures exhibit different abilities in localization and de-
tection for each sound event, we proposed a class-based ensemble
method to attain more accurate SED and SSL results for each event.

2. PROPOSED METHOD

2.1. Features

Task 3 provides two types of 4-channel spatial sound format:
First-Order of Ambisonics (FOA) and tetrahedral microphone array
(MIC) [9] while the sound data was recorded with a 24 kHz sam-
pling frequency. In this report, both datasets, say FOA and MIC,
are utilized for training our model. Firstly, we extract 64 log-Mel
magnitude spectrogram for each audio file using short-term Fourier
transform (STFT) with the configuration of 40 ms frame length and
20 ms hop length. Then GCC with phase transform (GCC-PHAT)
feature is computed for MIC format data and acoustic intensity vec-
tor (IV) is used for FOA format data [10]. Consequently, 17 in-
put feature maps are used to train our model, including 7 feature
maps for FOA format signal (4 channels of log-Mel magnitude and
3 channels of IVs) and 10 feature maps for MIC format signal (4
channels of log-Mel magnitude and 6 channels of GCC-PHAT).

2.2. Network architecture

The overall architecture of our system is illustrated in Figure 1.
The main difference compared with the baseline system is that the
bidirectional gated recurrent unit (Bi-GRU) module is substitute by
Conformer block, which is proposed to model both local and global
dependencies of an audio sequence by combining convolution neu-
ral networks and transformers.

The 17 feature maps are fed into the convolutional neural net-
works (CNN) blocks firstly to extract high-level features. Each
CNN block consists of a 2D convolution layer, a rectified linear unit
(ReLU) process, a batch normalization layer and a max-pooling op-
eration. The detailed parameters of the CNN block are shown in
Figure 1.

The output activation from CNN is further reshaped to a 60
frame sequence of length 512 feature vectors and fed to Conformer
block which is used to learn both the position-wise local features
and the temporal context information from the CNN output acti-
vations. The Conformer block is composed of two Feed Forward
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Figure 1: The overview of proposed model architecture

modules sandwiching the Multi-Headed Self-Attention module and
the Convolution module. A residual connection is added behind
each block. Mathematically, for input x to a Conformer block, the
output y can be written as

x̃ = x+
1

2
FFN(x) (1)

x′ = x̃+MHSA(x̃) (2)

x′′ = x′ +Conv(x′) (3)

y = Layernorm(x′′ +
1

2
FFN(x′′)) (4)

where FFN(·) refers to the Feed Forward module, MHSA(·) refers
to the Multi-Head Self-Attention module and Conv(·) refers to the
Convolution module. The structure of the Feed Forward module
and Convolution module are shown as in Figure 2 and Figure 3,
respectively. More details about Conformer can be found in [5].
In our submission system, the dimension of the attention vector is
set to 512, the number of attention heads is set to 8 and the kernel
size of the depthwise convolution is set to 31. The number of the
Conformer block is set to 2 as shown in Figure 1. The Conformer
block is followed by FC layers, the activations of the first and the
second FC layers are linear while the activation of the last FC layer
is set to be tanh since the ACCDOA training target is adopted.

In addition, we have also tried to substitute the CNN layer to
other high-level feature representation modules, including SERes-
Net, ResNet and Xception. These architectures increased the num-
ber of the model parameter, however, showed no improvement in
SELD results. The training target is tried to be set as mean square
error (MSE) and masked-MSE and the results showed the better
performance with ACCDOA.

2.3. Data Augmentation

Compared with the scale of model parameters, only 600 recordings
in the TAU-NIGENS dataset are obviously insufficient. To over-
come this problem and promote the generalization of the model,
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Figure 2: Feed forward module in the Conformer block
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Figure 3: Convolution module in the Conformer block

we use the following data augmentation techniques to expand the
dataset.

2.3.1. Audio Channel Swapping

The ACS method has been widely used in the challenges of pre-
vious years. The basic idea is to swap channels of the recordings
and generate new DOA representations according to the spherically
symmetrical geometry of the microphone array. This method is
suitable for both MIC and FOA formats. Each DOA label can be
transformed and generate seven new labels (90-degree rotation and
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Table 1: The performance of the submitted models on the development set

Index Model Loss Ensemble ER20◦ F20◦ LECD LRCD SELDscore

1 Baseline-SELDnet ACCDOA None 0.62 39.3% 22.0◦ 47.1% 0.47

2 CNN-Conformer MSE None 0.50 60.3% 18.1◦ 68.8% 0.33

3 CNN-Conformer ACCDOA None 0.49 60.4% 16.0◦ 64.0% 0.33

4

CNN-Conformer

ResNet-Conformer

SEResNet-Conformer

ACCDOA Yes 0.47 61.3% 14.0◦ 59.0% 0.33

5 CNN-Conformer ACCDOA Yes 0.46 63.2% 13.9◦ 62.9% 0.32

Table 2: A performance comparision for different models with ACCDOA loss on the development set

Model Augmentation ER20◦ F20◦ LECD LRCD SELDscore

Baseline-SELDnet None 0.62 39.3% 22.0◦ 47.1% 0.47

Baseline-SELDnet ACS 0.59 44.1% 21.4◦ 54.9% 0.42

CNN-Conformer ACS 0.52 58.7% 17.3◦ 65.7% 0.34

Baseline-SELDnet ACS;TFM 0.56 47.6% 20.5◦ 58.2% 0.40

CNN-Conformer ACS;TFM 0.49 60.4% 16.0◦ 64.0% 0.33

CNN-Conformer ACS;TFM;SP 0.49 59.4% 16.5◦ 64.5% 0.33

mirroring in azimuth, mirroring in elevation).

2.3.2. Speed Perturbation

As a data augmentation technique for ASR, SP is proved to be ef-
fective. For the SELD task, we use variable speed to stretch the
audio and apply it to multi-channel recordings. Specifically, we
select a cut-off point in a 60-second recording, increase the sam-
pling rate on one side of the cut-off point, and reduce the sampling
rate on the other side to make the length of the entire sequence un-
changed. The generated time sequence was used to perform linear
interpolation on all features (including MIC and FOA formats) and
corresponding labels to obtain a new set of features and labels with
the same dimensions.

2.3.3. Time Frequency Masking

We apply the TFM method commonly used in ASR to the SELD
task. In the Mel-spectrogram features of MIC and FOA record-
ings, masks are randomly used in the time and frequency domains.
Unlike the above two approaches, the masks are generated in each
batch, and no new labels will be added.

2.4. Model ensemble

As an ensemble method, we use a class-based weighted mean of
the output predicted by different models as shown in Figure 4 under
the assumption that different models exhibit different capabilities in
detection and localization for each sound event. More precisely, let
x denotes the coordinates prediction of model m and sound event e.
The output of the ensemble model for sound event e is x, where

As an ensemble method, we use a class-based weighted mean of
the output predicted by different models as shown in Figure 4 under
the assumption that different models exhibit different capabilities in
detection and localization for each sound event. More precisely, let
{xe,m, ye,m, ze,m} denotes the coordinates prediction of model m
and sound event e. The output of the ensemble model for sound
event e is {xe, ye, ze}, where

xe =
∑

m we,mxe,m

ye =
∑

m we,mye,m

ze =
∑

m we,mze,m

(5)

with we,m is the weight for model m and sound event e.
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Figure 4: Illustration of the class-based ensemble method

3. EXPERIMENTS

The results obtained by the proposed system on the development
set are shown in Table 1. The network is trained by the Adam op-
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timizer. We train the network for 400 epochs with a minibatch size
of 256 and initialize the learning rate as 0.001, which will be de-
creased by 31.6% if the optimization criterion cannot reduce in 10
consecutive epochs. Finally, the DOA regression determines the
prediction of SED, and the threshold is 0.5, which is shown in
Figure 1. To train the weight parameters of the ensemble model,
the predictions of the training set were used by adopting the cross-
validation setup. For submission system index 4, there are 4 CNN-
Conformer, 1 SEResNet-Conformer and 1 ResNet-Conformer in
the ensemble model. As for submission system index 5, there are
7 CNN-Conformer in the ensemble model while different CNN-
Conformer in these systems are obtained by early stopping. The
training data set is generated by the abovementioned data augmen-
tation approaches. It can be seen from Table 1 that our proposed
model outperforms the baseline in terms of all metrics.

In order to provide more information about the contribution of
data augmentation and substituting Bi-GRU block with Conformer
block, we provide ablation experiment results in Table 2. It can be
shown that ACS, TFM and Conformer block have greatly improved
the performance of the system while the benefits brought by the SP
data augmentation approach are not obvious.

4. CONCLUSION

In this technical report, we described the system participating in
the DCASE challenge 2021 task 3. We introduce Conformer into
SELDnet to improve the ability to model the temporal dependencies
and use several data augmentation approaches to expand the training
data. Then we proposed a class-based ensemble model to get a
more accurate SELD estimation result. The experiments show that
the proposed system achieves better results across the evaluation
metrics with a large margin.
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