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ABSTRACT
This report details the submission to task1 of DCASE2022 compe-
tition. The task aims to classify acoustic scenes using devices with
low computational power and memory. We propose two ensemble
models for scene classification. The first model clusters classes into
2 groups, each of a two-network ensemble being responsible for
intra-group discrimination, i.e. discriminating between the classes
that are most related in the confusion matrix. The second model
implements a canonical one-versus-all ten-network ensemble archi-
tecture followed by knowledge distillation, i.e. the ensemble model
is used as the teacher network. The student is an optimised version
of the DCASE2022 baseline architecture. In both models we re-
sort to three different data pre-processing techniques: audio down-
sample; mel-spectrogram tuning; and data augmentation. We’ve
used the DCASE2022 baseline for all networks - two-network en-
semble, ten-network ensemble and student network - on which we
have conducted an architecture’s hyperparameter search to iden-
tify the best performing architecture, while being compliant with
DCASE2022 performance metrics. Results revealed that data pre-
processing and knowledge distillation techniques improve overall
performance. Nevertheless, a simple two-network ensemble with-
out knowledge distillation, maintains the MACS and parameters
size low, while achieving similar results.

Index Terms— DCASE2022, Architecture search, ensemble,
knowledge distillation, data augmentation

1. INTRODUCTION

Acoustic scene classification aims to recognise different acoustic
scenes based on their audio features. Extracting context information
based on audio features has a lot of applications, many of which
have complexity constraints due to the limited computational and
memory resources available on edge devices.

Task 1 of the DCASE2022 Challenge[1] – Low-Complexity
Acoustic Scene Classification – aims to promote the research
around this subject by comparing different classification approaches
using a publicly available dataset, TAU Urban Acoustic Scenes
2022 Mobile dataset[2][3]. To ensure a good performance across
different recording devices, the dataset includes data recorded and
simulated with a variety of devices. The challenge sets complex-
ity limits modelled after Cortex-M4 devices constraints, imposing
a maximum of 128K model parameters (including the zero-valued
ones) and a maximum of 30 million MACs per inference.

Mel-spectrograms from the audio signals were used as input
features. To increase the extracted features relevance, hypertun-

ing was applied to the spectrogram’s parameters. Furthermore,
the models’ parameters and architecture were also tuned to achieve
the best performance given the complexity limits. Ensemble tech-
niques were used to increase the models’ class discrimination. Fi-
nally, knowledge distillation(KD) was applied to reduce the ensem-
ble models’ complexity. Data augmentation techniques were also
used to improve generalisation.

This report is organised as follows: in Sections 2 and 3 the input
data and model tuning is described; Section 4 presents the ensemble
models and posterior KD techniques; at last, results and conclusions
are presented in Sections 5 and 6.

2. DATA PREPROCESSING TECHNIQUES

The TAU Urban Acoustic Scenes 2022 Mobile dataset, henceforth
designated as original dataset, contains recordings from 12 Euro-
pean cities in 10 different acoustic scenes using 4 different devices.
Additionally, synthetic data for 11 mobile devices S1-S11 were sim-
ulated using the audio recorded with the first device. The audio is
provided in a single-channel 44.1kHz 24-bit format. The original
dataset contains data from 10 cities and 9 devices, while the eval-
uation dataset contains data from 12 cities and 11 devices – 5 new
devices not available in the development set. As per suggestion of
the challenge guidelines, the original dataset was split in two: 70%
of the data for each device for training and 30% for testing. In order
to create a perfectly balanced test set, a number of segments from
various devices are not included in this split.

Preprocessing was done using the Librosa library[4]. The input
data was downsampled to 8kHz and the log Mel spectrogram was
calculated using the Short-Time Fourier Transform (STFT) with a
window length of 2048 samples. Data was augmented to balance
the difference of samples available between devices, improving the
model’s generalization. The augmentation techniques used were:
pitch shift, time stretch, mixup[5], time and frequency mask[6].

Additionally, to allow the search for optimal hyperparameters
and the implementation of audio signal processing layers – Mel
spectrogram – in the model, we use the Kapre[7] tool with the ob-
jective of finding signal representations that best contribute to the
final result. The search was made with the KerasTuner[8] structure
using the Hyperband[9] method. Four sampling frequencies (FS)
were tested, each one two times.

The search grid was set to find the optimal value for Mel bins
and hop length:

- Sampling Frequency search options:
FS = [8, 16, 22.05, 44.1][kHz]
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Table 1: Mel spectrogram tuning: most significant results. These
results were obtained with 2048 STFT.

FS Hop length nMels Input Shape ACC LOSS
44.1 kHz 1024 40 40x44 41.99 1.740
44.1 kHz 1024 60 60x44 43.21 1.713
22.05 kHz 1536 60 60x15 43.90 1.610
22.05 kHz 1536 140 140x15 47.44 1.558

16 kHz 1024 180 180x16 49.47 1.474
16 kHz 1024 120 180x16 48.88 1.496
8 kHz 1024 260 260x8 50.70 1.428
8 kHz 1024 140 140x8 49.50 1.450

- SFFT window size search options:
SFFTWsize = [256, 512, 1024, 2048]

- Mel bins search options:
MELrange = [20, 300]; MELStep = 20

- Hop length SFFT window ratio search options:
HOP = [25%, 50%, 75%]

The model used was the baseline model with the pool size of
the max pooling block of the 3rd convolutional layer changed from
4 × 10 to 2 × 2, this was done to avoid problems with different
input sizes and to give equal importance to both input dimensions.
The most significant results, among all tested configurations, are
presented in Table 1. We observed that a lower sampling frequency
(lower FS) and higher number of Mel bins (higher nMels) leads to
better results. This may imply that lower frequency features may be
more relevant to the DCASE2022 challenge. The two input config-
urations with better results were:

- Input Configuration 1 (IC1): FS = 8kHz and nMels = 260

- Input Configuration 2 (IC2): FS = 8kHz and nMels = 140

3. MODIFIED BASELINE MODEL HYPERTUNING

Taking the Baseline Model as reference, given the parameters and
MAC limits of the challenge[10], a model hyperparameters search
was made.

The Baseline Model architecture hypertunning was made using
the two best performant input configurations identified in section 2.
Hence two models topologies were searched, one for each input
configuration, IC1 and IC2. The search grid was set has follows:

-CNN layer #1:
Filters = [4, 32] FiltersStep = 4

-CNN layer #2/#3:
Filters = [4, 64] FiltersStep = 4
Pooling type = [avg,max]
Pooling size = [([1, 2, 3, 4, 6], [1, 2])]

-Additional CNN layers #[1, 2]:
Filters = [4, 32] FiltersStep = 4
Pooling type = [avg,max]
Pooling size = [([1, 2], [1, 2])]

-Global Pooling [GlobalMax,GlobalAvg, noPool]

-Dropout = [0, 0.7]DropoutStep = 0.1

-Dense units = [32, 256] unitsStep = 32

- All CNN layers have:
Kernel size = [([3, 5, 7], [3, 5, 7])]
Dropout = [0, 0.7]DropoutStep = 0.1

Table 2: Best result for each proposed model topology: details and
metrics

Model FS Input Shape ACC LOSS Parameter MACs
TBM1 8 kHz 260x8 49.40 1.425 26.7k 23.6M
TBM2 8 kHz 140x8 49.72 1.386 52.9k 25.5M

This way, the model’s performance can be improved by choos-
ing the most relevant features in an autonomous way. Has in
data prepossessing (see section 2) the search for optimal hyper-
parameters was made with the KerasTuner[8] structure using the
Hyperband[9] method.

Table 2 presents the best result for each topology, Tuned Base-
line Model 1 (TBM1) and Tuned Baseline Model 2 (TBM2). Based
on the search stages the model with the best performance was the
TBM2 model and its respective input configuration, i.e. IC2, with
the following search output configuration:

-CNN layer #1:
Filters = 20
Kernel size = (7, 5)

-CNN layer #2:
Filters = 28
Kernel size = (7, 3)
MaxPooling size = (1, 2)
Dropout = 0.1

-CNN layer #3:
Filters = 28
Kernel size = (3, 7)
MaxPooling size = (2, 2)
Dropout = 0.3

-CNN layer #4:
Filters = 16
Kernel size = (7, 5)
Dropout = 0.3

-Global Average Pooling

-Dropout = 0.4

-Dense units = 256

The TBM2 model’s architecture is shown in Fig. 1 along with
the baseline architecture for comparison.

4. ARCHITECTURE MODEL SEARCH AND
DEVELOPMENT

Ensemble[11] techniques are known to increase the system’s per-
formance and even reduce the model’s complexity by combining
trained features from different sample sets and/or models. Also,
classification models typically present better performance when the
number of labels to classify is small. Hence, two ensemble ap-
proaches were developed:

• Six-Class Two Ensemble network + Final Classification Dense
Layer (6C2EN+FCDL)

• Teacher/Student Knowledge Distillation of Two-Class
Ten Ensemble network + Final Classification Dense
Layer(TSKD@2C10EN+FCDL)

These models are based on the TBM2 architecture, depicted in
Fig. 1, and will be individually described in sections 4.1 and 4.2.
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(a) Baseline

(b) TBM2

Figure 1: Baseline and Tuned Baseline Model 2(TBM2) architec-
ture.

4.1. Six-Class Two Ensemble Network + Final Classification
Dense Layer

The first approach uses a six-class ten ensemble network with a
final classification dense layer. Two TBM2 models, TBM2core-
1 and TBM2core-2, were used in an ensemble configuration, as
shown in Fig. 3. In order to meet the complexity requirements of
the DCASE2022 the number of filters from the first two convolution
layers, of each TBM2core-1 and TBM2core-2, was reduced to half.

The training data was split in 2 sets of samples with 5 la-
bels each, by joining the most related ones in the confusion matrix
(Fig. 2), creating two groups of classes:

• Group 1: airport, public square, shopping mall, street pedes-
trian, park;

• Group 2: bus, metro, metro station, street traffic, tram.

One expects that each model learns to better discriminate among
them. Furthermore a new label was added to contain the remainder
labels that do not belong to the split.

The TBM2core-1 and TBM2core-2 models were trained indi-
vidually and their weights were blocked afterwards, preventing the
loss of trained features and overfitting during the last stage of the
training of the 6C2EN+FCDL. After the learning stage only the core
part (TBM2core) of the models were used. After concatenation a
dense layer was added as the final classification layer. Finally, the
added layer training was performed.

4.2. Teacher/Student Knowledge Distillation of a Two-Class
Ten Ensemble network + Final Classification Dense Layer

The second approach use Teacher/Student Knowledge Distillation
(KD) of Ten-Class Two Ten Ensemble network + Final Classifica-
tion Dense Layer, as shown in Fig. 4. The TBM2 model is used
to classify each label in a binary fashion (One vs. Rest), by teach-
ing each model identify if a sample belongs to a specific class or
not, resulting in 10 models in total, i.e., TBM2core+FCDL-1 ...
TBM2core+FCDL-10. This architecture is illustrated in Fig. 4. As
in Section 4.1 only the TBM2core part of the model was used after
the training stage.

Figure 2: Confusion matrix (TBM2).

Model Ensemble KD ACC LOSS Parameter MACs
Teacher AI4EDGE 3 10 ✗ 42.6 2.707 529k 255M

AI4EDGE 3 10 ✓ 50.5 1.347 52.9k 25.5M
Teacher AI4EDGE 4 10 ✗ 98.1 0.221 529k 255M

AI4EDGE 4 10 ✓ 60.5 1.103 52.9k 25.5M

Table 3: Knowledge Distillation models’ results

Although achieving a better performance, shown in Table 3,
this second approach is computationally complex (about 10× the
baseline model complexity) not fulfilling the DCASE2022 chal-
lenge complexity requirements. To tackle this, knowledge distilla-
tion techniques[12][13] were used to obtain a more compact model
– a fairly complex model (teacher) is used to train a lower complex-
ity model (student). This technique not only allows to reduce the
model’s dimensions but also fosters the optimisation of the student
model, attaining a performance that is hardly achieved if trained in
a traditional way.

5. RESULTS AND SUBMISSIONS

The models were trained for 200 epochs with a batch size of 64
using ADAM optimiser and early stopping. The objective evalua-
tion metric was to minimise the categorical cross-entropy loss. The
model was also quantized to INT8.

The submitted models’ features and results are listed on Ta-
ble 4. All models are based in the methods 6C2EN+FCDL (de-
scribed in section 4.1) and TSKD@2C10EN+FCDL (described in
section 4.2). The AI4EDGE 1 & AI4EDGE 2 submissions rep-
resent the first ensemble approach (6C2EN+FCDL), joining two
models pre-trained in different label sets. The AI4EDGE 3 &
AI4EDGE 4 submissions represent the second ensemble approach
(TSKD@2C10EN+FCDL), i.e., ensemble of 10 binary classifica-
tion TBM2 models used as teacher model in the KD technique. The
results of

In AI4EDGE 1 and AI4EDGE 3 the full development
dataset was used for training phase, while the AI4EDGE 2 and
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(a) Learning

(b) Ensemble

Figure 3: 6C2EN+FCDL model’s architecture.

Table 4: Submitted models’ results for DCASE2022 Task 1

Model Ensemble KD ACC LOSS Parameter MACs
AI4EDGE 1 2 ✗ 75.6 0.742 70.6K 21.1M
AI4EDGE 2 2 ✗ 73.5 0.791 70.6K 21.1M
AI4EDGE 3 10 ✓ 50.5 1.347 52.9k 25.5M
AI4EDGE 4 10 ✓ 60.5 1.103 52.9k 25.5M

AI4EDGE 4 used only the training split (section 2) in the pre-
training and the full development dataset in the final training.

6. CONCLUSIONS

This work was developed with the objective of improving perfor-
mance comparatively with the provided baseline model while ful-
filling the complexity requirements of the DCASE2022 challenge,
being able to improve the original ACC=42.9% and LOSS=1.575.
This was achieved though the use of several techniques, namely
input prep-processing, emsemble networks and knowledge distilla-
tion, meaning the best results were ACC=75.6 and LOSS=0.742.

Through input pre-processing it was testified the importance of
adapting the dataset to the problem. The data augmentation allowed
to balance the dataset providing a more robust model to the presence
of new data. Downsampling to 8kHz enabled to change the model
focus to a wider temporal window and consequently to a lower fre-
quency range, reducing the number of features needed, which al-
lowed to increase the number of Mel bins. The improvement of
the results suggested that the most important features to distinguish
between classes are found on lower frequencies.

Hypertunning the model’s architecture also proved to be im-
portant, achieving a more autonomous way of finding features that
better improve performance within the complexity limits imposed.
The ensemble methods showed an increased performance letting the
model focus on a smaller number of classes.

(a) Learning

(b) Ensemble (Teacher)

(c) Knowledge Distillation (TBM2 Student)

Figure 4: TSKD@2C10EN+FCDL model’s architecture.

The knowledge distillation technique granted a significant re-
duction of the model’s size by taking advantage of the student’s
learning ability.
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