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Abstract— In this report, we presents low-complexity deep
learning frameworks for acoustic scene classification (ASC).
The proposed frameworks can be separated into four main
steps: Front-end spectrogram extraction, online data augmen-
tation, back-end classification, and late fusion of predicted prob-
abilities. In particular, we initially transform audio recordings
into Mel, Gammatone, and CQT spectrograms. Next, data
augmentation methods of Random Cropping, Specaugment,
and Mixup are then applied to generate augmented spectro-
grams before being fed into deep learning based classifiers.
Finally, to achieve the best performance, we fuse probabilities
which obtained from three individual classifiers, which are
independently-trained with three type of spectrograms. Our
experiments conducted on DCASE 2022 Task 1 Development
dataset have fullfiled the requirement of low-complexity and
achieved the best classification accuracy of 60.1%, improving
DCASE baseline by 17.2%.

Clinical relevance— Mixup data augmentation, Convolu-
tional Neural Network (CNN), pruning, quantization, spectro-
gram, Gammatone filter.

I. INTRODUCTION

To deal with one of the main ASC challenges, mismatched
recording devices, a variety of methods have been proposed,
which mainly make use of ensemble techniques: Ensemble
of spectrogram inputs [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11] (i.e., This approach uses multiple spectrogram
inputs but only one model architecture) or ensemble of
different classification models [12], [13], [14] (i.e., This
approach uses only one spectrogram input, but explores
the spectrogram by different model architectures). Although
these approaches help to achieve good results, they show very
large footprint models, which causes challenging to apply
on edge-devices. Indeed, all top-10 systems proposed in
recent DCASE challenges in 2018, 2019, 2020 present large
architectures of deep neural networks, requiring larger than
2 MB of memory to store trainable parameters. Recently,
DCASE 2021 and DCASE 2022 Task 1A challenges [15]
focus on dealing the issue of high-complexity model, then
require the maximum model complexity of 128 KB. Notably,
DCASE 2022 Task 1A challenge does not allow to use
pruning techniques as the pruning parameters still occupy
the memory and cost the computation on edge-devices.

In this report, we introduces robust and low-complexity
deep learning frameworks for ASC task. In particular, to deal
with the ASC challenge of mismatched recording devices, we
propose an ensemble of multiple spectrogram inputs, using
Mel filter [16], Gammatone [17] filter, and CQT [16]. For
each network used for training an individual spectrogram
input, we deal with the issue of model complexity by apply-

ing multiple techniques of channel reduction, decomposed
convolution, and quantization.

II. THE PROPOSED LOW-COMPLEXITY DEEP LEARNING
FRAMEWORK
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Fig. 1. High-level architecture of an ASC system.

A. Propose low-complexity ASC models

A framework for ASC task with high-level architecture
is shown in Fig. 1. Initially, a draw audio signal is firstly
transformed into a spectrogram of 128×135 by using MEL
filter [16], Gammatone filter [17], or CQT [16] with the
FFT number, Hanna window size, hop size, and the filter
number set to 4096, 2048, 306, and 128. We then apply
delta and delta-delta on the spectrogram, generate a new
spectrogram of 128×135×3 (i.e., The channel dimension is
3 which causes by concatenating the original spectrogram,
delta, and delta-delta).

Next, we apply data augmentation methods on the spec-
trograms. In this report, we apply three data augmenta-
tion methods of Random Cropping [18], Specaugment [19],
and Mixup [20], [21]. In particular, the temporal dimen-
sion of spectrograms of 128×135×3 is randomly cropped
into 128×128×3 (e.g., Random Cropping method). Then,
ten continuous and random frequency or temporal bins of
the cropped spectrograms are erased (e.g., Specaugment
method). Finally, the spectrograms are randomly mixed to-
gether using different ratios from Uniform or Beta distribu-
tions (e.g., Mixup method). All of three data augmentation
methods are applied on each batch of spectrograms during
the training process, referred to as the online data augmen-
tation methods.

We then fed augmented spectrograms into a back-end deep
learning networks for classification. We propose three models
in this report: (M1) a model with four convolutional layers
as shown in Table III, (M2) a model with six convolutional
layers as shown in Table I, and (M3) a model with eight
convolutional layers as shown in Table II. As using limited
filter numbers, proposed models present low complexity
architectures, in which M3 presents the largest one.

Inspired by [22], the convolutional layer used in these
models is decomposed to sub convolutional computation as



TABLE I
LOW-COMPLEXITY M2

Network architecture Output
Convolution ([3×3] @ C out1=16) - ReLU - BN - Dropout (10%) 128×128×16
Convolution ([3×3] @ C out2=16) - ReLU - BN - AP [2×2] - Dropout (10%) 64×64×16
Convolution ([3×3] @ C out3=32) - ReLU - BN - Dropout (10%) 64×64×32
Convolution ([3×3] @ C out4=32) - ReLU - BN - AP [2×2] - Dropout (10%) 32×32×32
Convolution ([3×3] @ C out5=64) - ReLU - BN - AP [2×2] - Dropout (10%) 16×16×64
Convolution ([3×3] @ C out6=64) - ReLU - BN - GAP - Dropout (10%) 64
FC - Softmax C = 10

TABLE II
LOW-COMPLEXITY M3

Network architecture Output
Convolution ([3×3] @ C out1=16) - ReLU - BN - Dropout (10%) 128×128×16
Convolution ([3×3] @ C out2=16) - ReLU - BN - AP [2×2] - Dropout (10%) 64×64×16
Convolution ([3×3] @ C out3=32) - ReLU - BN - Dropout (10%) 64×64×32
Convolution ([3×3] @ C out4=32) - ReLU - BN - AP [2×2] - Dropout (10%) 32×32×32
Convolution ([3×3] @ C out5=64) - ReLU - BN - AP [2×2] - Dropout (10%) 32×32×64
Convolution ([3×3] @ C out6=64) - ReLU - BN - AP - Dropout (10%) 16×16×64
Convolution ([3×3] @ C out6=128) - ReLU - BN - AP - Dropout (10%) 16×16×128
Convolution ([3×3] @ C out6=128) - ReLU - BN - GAP - Dropout (10%) 128
FC - Softmax C = 10

shown in Figure 2. By decomposing a convolutional layer
into four sub-convolutional layers, the model complexity
is reduced to nearly 1/8.5. Additionally, 8-bit quantization
method is applied on each model which further reduces the
model size to 1/4. As a result, three proposed low-footprint
models report the model complexity of 10.6 KB, 10.0 KB,
and 36.8 KB for M1, M2, and M3, respectively.

As using multiple spectrograms as a rule of thumb to
improve ASC performance [1], [9], [2], [4], an ensemble
of three spectrograms of log-Mel, Gammatone, and CQT is
conducted in this work. As we need to train independently
three models for three different spectrogram inputs, the final
complexity of the proposed frameworks (i.e., each framework
comprises three models of M1, M2 or M3) are approximately
31.8 KB, 30 KB, and 110 KB respectively, which meets
DCASE 2022 Task 1 challenge requirement (i.e., the final
model must be less than 128 KB).

To fuse probability results obtained from three spectro-
grams, we conduct experiments over individual networks
with each spectrogram input, then obtain predicted proba-
bility of each network as p̄s = (p̄s1, p̄s2, ..., p̄sC), where
C is the category number and the sth out of S networks
evaluated. Next, the predicted probability after PROD fusion
pf−prod = (p̄1, p̄2, ..., p̄C) is obtained by:

p̄c =
1

S

S∏
s=1

p̄sc for 1 ≤ s ≤ S (1)

Finally, the predicted label ŷ is determined by

ŷ = argmax(p̄1, p̄2, ..., p̄C) (2)

III. EVALUATION SETTING AND RESULTS

A. TAU Urban Acoustic Scenes 2022 Mobile, development
dataset [23]

This dataset is referred to as DCASE 2022 Task 1 De-
velopment, which was proposed for DCASE 2022 chal-
lenge [24]. In this challenge, the limitation of model com-
plexity is set to 128 KB of trainable parameter, not allow
to use pruning techniques, and evaluate on 1-second audio
segment. The dataset is slightly unbalanced, being recorded

TABLE III
LOW-COMPLEXITY M1

Network architecture Output
Convolution ([3×3] @ C out2=16) - ReLU - BN - AP [2×2] - Dropout (10%) 64×64×16
Convolution ([3×3] @ C out4=32) - ReLU - BN - AP [2×2] - Dropout (10%) 32×32×32
Convolution ([3×3] @ C out5=64) - ReLU - BN - AP [2×2] - Dropout (10%) 16×16×64
Convolution ([3×3] @ C out6=128) - ReLU - BN - GAP - Dropout (10%) 128
FC - Softmax C = 10
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Fig. 2. Decomposed convolution technique applied to a convolutional layer.

across 12 large European cities: Amsterdam, Barcelona,
Helsinki, Lisbon, London, Lyon, Madrid, Milan, Prague,
Paris, Stockholm, and Vienna. It consists of 10 scene classes:
airport, shopping mall (indoor), metro station (underground),
pedestrian street, public square, street (traffic), traveling by
tram, bus and metro (underground), and urban park. The
audio recordings were recorded from 3 different physical
devices namely A (10215 recordings), B (749 recordings),
C (748 recordings). Additionally, synthetic data for mobile
devices was created based on the original recordings, referred
to as S1 (750 recordings), S2 (750 recordings), S3 (750
recordings), S4 (750 recordings), S5 (750 recordings), and
S6 (750 recordings).

To evaluate, we follow the DCASE 2022 Task 1 chal-
lenge [24], use two sub-sets known as Training (Train.) and
Evaluation (Eval.) from the Development set for training
and testing processes, respectively. Notably, two of 12 cities
and S4, S5, S6 audio recordings are only presented in the
Eval. subset for evaluating the issue of mismatched recording
devices and unseen samples.

B. Deep learning framework implementation

We use Tensorflow framework to construct all deep learn-
ing models proposed in this report and Adam method [25]
for optimization. The training and evaluating processes are
conducted on GPU Titan RTX 24GB. As we use Mixup
for data augmentation method, labels are not one-hot en-
coding format. Therefore, Kullback–Leibler divergence (KL)
loss [26] is used as shown in Eq. (3) below.

LossKL(Θ) =

N∑
n=1

yn log

{
yn

ŷn

}
+
λ

2
||Θ||22 (3)

where Θ are trainable parameters, constant λ is set initially
to 0.0001, N is batch size set to 100, yi and ŷi denote
expected and predicted results.



TABLE IV
PERFORMANCE (ACC.% AND MACS()) COMPARISON AMONG DCASE
BASELINE, THE PROPOSED ENSEMBLE OF MULTIPLE SPECTROGRAMS

WITH MODELS M1, M2, OR M3

Performance DCASE Ensemble Ensemble Ensemble
baseline at M1 at M2 at M3

Airport 39.4 52.5 60.7 57.2
Bus 29.3 69.4 62.5 71.3
Metro 47.9 44.9 36.2 44.9
Metro station 36.0 50.6 28.3 40.9
Park 58.9 81.1 67.2 83.9
Public square 20.8 23.8 37.7 50.8
Shopping mall 51.4 74.2 60.7 60.5
Street pedestrian 30.1 27.9 23.0 34.1
Street traffic 70.6 81.2 78.6 78.8
Tram 44.6 50.5 59.1 78.0
Average 42.9 55.6 51.4 60.1
Parameters (K) - 33.8 31.9 115.9
MACs (M) - 0.9 0.75 0.9

C. Performance comparison between DCASE baseline and
the proposed models

As Table IV shows, all proposed ensembles in three mod-
els (M1, M2 and M3) outperform DCASE baseline across
individual categories. Ensemble at M3 model achieves the
best overall performance of 60.1% which improves DCASE
baseline by 17.2%. Notably, ‘street pedestrian’ class shows
low performance compared with the others, which need to
further investigate.

IV. CONCLUSION

We have just presented low-complexity frameworks for
ASC task, which makes use multiple spectrogram inputs and
model compression techniques. While the ensemble of multi-
ple spectrograms helps to tackle different ASC challenges of
mismatched recording devices or lacking of input to improve
the performance, multiple techniques of model compression
help to achieve low-complexity models less than 128 KB.
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