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ABSTRACT

Anomalous sound detection (ASD) is the task of identifying if a
sound is normal or anomalous with respect to a given reference. In
most scenarios, we have a large amount of normal data to design
our model, but little or no anomalous data. When this situation oc-
curs, the problem can be approached in an unsupervised manner,
i.e., only normal data is used for design. In this report we present
a solution for the DCASE2022 task 2 (Unsupervised Anomalous
Sound Detection for Machine Condition Monitoring Applying Do-
main Generalization Techniques), which aims to address the ASD
problem under domain generalization. This means that the data to
develop the system belongs to the source domain, while the test data
can belong to this domain or to a different one (target domain). The
presented solution proposes an embeddings extractor based on a Vi-
sion Transformer (ViT) and makes use of the k-Nearest-Neighbor
(k-NN) algorithm to obtain the anomaly score.

Index Terms— unsupervised anomaly detection, vision trans-
former, arcface, domain generalization

1. INTRODUCTION

Unsupervised anomaly detection (UAD) is the task of identifying
whether an event is normal or anomalous with respect to a given
reference using only normal data for its design. In particular, in
the field of Deep Learning, the concept of unsupervised refers to
the fact that no labels are used to train the models. For the case
of anomaly detection, this means that only normal data are used to
train the models. The solutions proposed in the literature for the
anomaly detection (AD) problem focus on being able to obtain an
anomaly score, which is a number that should be higher for anoma-
lous data than for normal data [1]. Subsequently, a threshold is
set and a sample is considered to be anomalous if and only if its
anomaly score is higher than that threshold.

In this paper we present a proposal to solve the unsupervised
anomalous sound detection problem, that is, to try to identify
whether a given audio is normal or anomalous using only normal
audios for its design. This problem has been particularly relevant in
recent years, being the second of the six tasks of the DCASE Chal-
lenge in 2020 and 2021 [2, 3]. To evaluate the performance of our
system, we use the dataset of task 2 of DCASE2022 and show its
performance in terms of AUC and pAUC, as proposed in the chal-
lenge.

To solve this problem there has been multiple proposals with
different approaches. Some of the most relevant are the follow-
ing. In DCASE2020, an autoencoder with dense layers and whose

input was 5 consecutive frames of the mel-spectrogram was pro-
posed as baseline. Mean squared error between input and output
was used as anomaly score. In DCASE2021, in addition to the pre-
vious one, another baseline was proposed using MobileNetV2 [4]
that took the mel-spectrograms as inputs. In this case, the negative
logit was used as the anomaly score. The 2020 winner [5] pro-
posed to use a Group Masked Autoencoder, which is an adaptation
of the Masked for Distribution Estimation (MADE) [6] in which
its inputs were the mel-spectrogram frames, instead of scalars. The
2021 winner [7] combined three different systems to achieve the
best possible performance. The first system obtained x-vectors [8]
and calculated the cosine and Mahalanobis distances between the
test embedding and the average training embedding as an anomaly
score. The second system used a WaveNet [9], but instead of us-
ing a few convolutions, they used an x-vector component. The last
one used a Normalizing Flow [10] to estimate the distribution of an
n-bin segment of a spectrogram conditioned to the remaining bins.

Our method combines a classifier with generative models to de-
tect anomalous sounds. In particular, the proposed system is a com-
bination of three networks. The first one is a embedding extractor.
The second one is a classifier that discriminates to which section
the embeddings coming from the previous network belong. Finally,
the third one is a normalizing flow that tries to estimate the prob-
ability distribution that the embeddings follow. The characteristics
of each of the three networks, the training process and how the pro-
posed anomaly scores are defined are detailed below. As far as we
believe, this is the first time such a system has been used for anoma-
lous sounds detection.

This paper is organized as follows. Section 2 presents the
dataset. Section 3 describes the proposed approach to solve the
problem. Section 4 explains the three systems presented to the Chal-
lenge. In section 5 the results for the three systems are presented.
Finally, in section 6, conclusions obtained are summarized.

2. DATASET

The DCASE2022 task 2 dataset is composed of data from ToyAD-
MOS2 [11] and MIMII DUE [12] and contains the sounds emitted
by seven machines operating normally and when broken (abnor-
mally). In addition, for each machine there are sounds belonging to
six sections. A section is defined as a subset of the dataset for cal-
culating performance metrics. Each section is dedicated to a spe-
cific type of domain shift. The machines are: ToyCar, ToyTrain,
fan, gearbox, bearing, slide rail, and valve and sections 0 to 5. The
recordings are 10 seconds long, single channel and sampled at 16
kHz. The way we split the database is as follows:
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Training Dataset: Consists of three sections for each machine
type (Sections 0, 1, and 2), and each section is a complete set of the
training and test data. For each section, this dataset is composed of
990 clips of normal sounds in a source domain for training, 10 clips
of normal sounds in a target domain for training and 100 clips each
of normal and anomalous sounds including data from both domains
for the test. Source/target information is provided in the test data
in the development dataset. Attributes that represents operational or
environmental conditions are also provided.

Additional Development Dataset: Provides three sections
identical to the evaluation dataset (Sections 3, 4, and 5). Each sec-
tion consists of (i) around 990 clips of normal sounds in a source
domain for training and (ii) only 10 clips of normal sounds in a
target domain for training.

Evaluation Dataset: Provides test clips for three sections (Sec-
tions 3, 4, and 5). Each section consists of 100 test clips, none of
which have a condition label (i.e., normal or anomaly) or the do-
main information (i.e., source or target). Attributes are not provided
in this dataset.

3. PROPOSED APPROACH

This section presents the proposed method for solving the UAD
problem under domain generalization. In this method, given an au-
dio, an embedding is obtained from an embedding extractor based
on the Vision Transformer (ViT) and the cosine distance between
this embedding and the nearest neighbor of the training audios is
used as the anomaly score. The architecture used as embeddings
extractor and the way to define the anomaly scores are detailed be-
low.

3.1. Vision Transformer based Embeddings Extractor

ViT was presented in [13] and was the first approach to image pro-
cessing that outperformed Convolutional Neural Networks (CNN)
in the image recognition task. The idea is to split an image into
16×16 patches, embed them linearly, add position embeddings and
pass the resulting arrays as input to a standard Transformer encoder.
To perform the classification task, they add an extra learnable ”clas-
sification token” to the sequence. Subsequently it has been success-
fully used for other tasks such as object detection [14] or semantic
segmentation [15].

As with computer vision systems based on CNNs, the Vision
Transformer has been used to process audio by taking the spectro-
gram, mel-spectrogram or similar as input. In particular, the Audio
Spectrogram Transformer proposed in [16] stands out. This system
divides the spectrogram into 16 × 16 patches, just like ViT, and
performs the identical process to the one described in the previous
paragraph. However, in the solution presented here, instead of tak-
ing patches of size 16 × 16 from the spectrogram, we take each of
the time-frames, embed them linearly, add position embeddings and
pass the resulting arrays as input to a standard Transformer encoder.
As in the ViT, to perform the classification task, we add an extra
learnable ”classification token” to the sequence. Next we formally
define the process to extract the embeddings.

To obtain the inputs to this network, first, we calculate the log-
mel-spectrogram of the signal X = {Xt}Tt=1, where Xt ∈ RF and
F and T are the number of mel-filters and time-frames, respectively.
As input to the embedding extractor, ψt = (Xt, .., Xt+P−1) ∈
RP×F is used. The context window is shifted L frames. So there
are N = ⌈T−P

L
⌉ inputs for each signal X . For the given results,

Layers Hidden size D MLP size Heads Params
12 384 1536 6 22M

Table 1: Details of Vision Transformer used in this work

Name Sections
all 0, 1, 2, 3, 4, 5
dev 0, 1, 2
eval 3, 4, 5
0 3 0, 3
1 4 1, 4
2 5 2, 5

Table 2: Different subsets of data used to train the Embeddings
Extractor

a frame size of the short-term-Fourier transform (STFT) of 1024
samples (64 ms) and a hop size of 50% is used. In addition, F =
128, P = 64 and L = 4 have been taken. This means that for 10
second inputs and a sampling rate of 16kHz, T = 313 andN = 63.
The output of the network is e(ψt) = et ∈ RS where e is the ViT
based embeddings extractor, whose details are shown in table 1.

Finally, for the classifier we have used the Additive Angular
Margin Loss (ArcFace) [17] to enhance discriminative power for
cosine distance.

3.2. Training of Embeddings Extractor

To train the embeddings extractor the objective is that the system
described in the previous section to be able to classify the machine
from which the sound comes from. We have used the crossentropy
as a cost function, we have used the Adam optimizer with a learning
rate of 1e-5 and a batch size of 128. Mixup with α equal to 0.5 has
been used as data augmentation. In addition, we have trained the
same network with different training subsets to analyze how train-
ing with different sections influences each machine. Table 2 shows
all the training subsets used. In all of them the data are normal and
in the source domain. The reason for this is the way in which the at-
tributes are modified according to the machines. figure 1 shows a t-
SNE representation of the embeddings obtained for network trained
with all subset.

3.3. Anomaly Scores

Once the network has been trained, to obtain the anomaly scores,
all the embeddings of the Training Dataset (both in the source and
target) are calculated. Once all these embeddings are obtained, to
calculate the anomaly score corresponding to an audio, the cosine
distances with the nearest neighbors of the training embeddings are
taken for the N inputs of each audio. Subsequently, the average of
these N cosine distances is used as the anomaly score. The fact of
using training embeddings in both source and target domains solves
the domain generalization problem.

4. SYSTEMS DESCRIPTION

This section presents the three proposed systems, which differ in
the use of the different training subsets described in the table 2. The
training data subsets used for each system, as well as the number of
epochs used, are described below.
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Figure 1: t-SNE representation of the embeddings for network
trained with all subset

Section
0 1 2 3 4 5

ToyCar dev dev dev eval eval eval
ToyTrain dev dev dev eval eval eval
bearing all all all all all all

fan 0 3 1 4 2 5 0 3 1 4 2 5
gearbox all all all all all all
slider dev dev dev eval eval eval
valve 0 3 1 4 2 5 0 3 1 4 2 5

Table 3: Training subsets used in system 3

System 1: In this system the subset all is used and the net-
work has been trained for 15 epochs for all machines and sections.

System 2: In this system the subset dev is used for the entries
of sections 0, 1 and 2 of all machines and the subset eval for the
entries of sections 3, 4 and 5 of all machines. In this case, the
networks have been trained for 30 epochs.

System 3: In this case, all the networks trained with the dif-
ferent subsets of the table 2 have been combined to obtain a higher
performance than in the previous systems. The way these subsets
have been used is shown in table 3. Likewise, the number of epochs
is different depending on the machine and section, as reflected in
table 4.

Section
0 1 2 3 4 5

ToyCar 30 30 30 30 30 30
ToyTrain 25 25 25 25 25 25
bearing 15 15 15 15 15 15

fan 15 15 25 15 15 25
gearbox 10 10 10 10 10 10
slider 25 25 25 25 25 25
valve 20 25 25 20 25 25

Table 4: Number of epochs in system 3

5. RESULTS

The harmonic mean of AUC Source, AUC Target and pAUC for
each machine in both the two baseline systems [18] and the three
systems proposed in the previous section are shown in table 5. Sev-
eral conclusions can be drawn from this table.

The first is that in the target domain the systems proposed in
this work outperform the baseline systems by far in all machines.
On the other hand, in the source domain in the ToyCar, ToyTrain
and fan, the baseline AE system outperforms the systems proposed
here, although the difference is minimal for ToyCar and fan. In the
rest of the machines, the proposed systems outperform the baseline
systems by a considerable margin, except in the case of valve, where
the result of the MobileNetV2 Baseline system is similar to System
3.

6. CONCLUSION

In this paper we have presented a method to detect anomalous
events using a ViT based Embeddings Extractor and tested its per-
formance with the DCASE 2022 task2 dataset. To the best of our
knowledge, this is the first time it has been used that each of the
time-frames has been passed as input to a ViT. Notably, as demon-
strated, this way of dealing with mel-spectrograms works and out-
performs other systems for the anomaly detection task.

When working with transformers, it is common to use pre-
trained models with rich databases such as Imagenet [19] or Au-
dioSet [20] and subsequently perform fine-tuning with the task’s
own data. This allows implementing larger and more expressive
models, obtaining better results in a multitude of tasks [16, 21].
Therefore, a future line of work consists of taking pretrained ViT
with databases such as those mentioned above and performing fine-
tuning with the data of this task and analyzing if a better perfor-
mance is achieved. On the other hand, another future line of work
consists of using this embedding extractor for tasks other than un-
supervised anomaly detection.
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