
Detection and Classification of Acoustic Scenes and Events 2022 Challenge

DCASE 2022 TASK 4 TECHNICAL REPORT
Technical Report
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ABSTRACT

This paper describes our solution for Task 4 of the 2022 edition
of the Detection and Classification of Acoustic Scenes and Events
competition. Our solution practically consists of two specialised
systems that excel in either of the two scenarios in the challenge.
Both utilise the CRNN model architecture and mean-teacher train-
ing setup proposed in the baseline solution. The modifications that
they share are the replacement of the CNN extractor with a ResNet-
18 architecture and the reduction of the FFT window from 2048
to 1024 samples. The systems diverge in four aspects: the set of
augmentations selected and whether they use any additional tech-
niques during training. For Scenario 1 we observed improvement
when using pitch shift, while all other data augmentation methods
resulted in lower PSDS. On the other hand, Scenario 2 benefited
greatly from spectrogram time warping and adding brown noise.
Further improvement on Scenario 2 was achieved by replacing at-
tention with mean aggregation for weak predictions, incorporat-
ing per-frame embeddings from Audio Spectrogram Transformer
(AST) and injecting Gaussian noise between teacher and student
during consistency loss calculation. Curiously, these modifications
diminished performance on Scenario 1. The system specialising in
Scenario 1 scored [0.3743, 0.5826] and the system specialising in
Scenario 2 scored [0.0701, 0.7938] in [PSDS1, PSDS2] respec-
tively.

Index Terms— Sound event detection, Self-supervised,
Student-teacher

1. PROBLEM OUTLINE

Task 4 of the Detection and Classification of Acoustic Scenes and
Events (DCASE) competition challenges the participants with a
Sound Event Detection (SED) problem, where the objective is to
detect one of 10 possible sounds in 10-second-long audio record-
ings and provide their temporal location within the sample. While
SED is not a new task in the field of audio research, it is notoriously
hard due to the lack of large quantities of strongly-labelled data,
that is audio recordings accompanied by onset-offset timestamps
indicating the presence of a given sound at that time. The setup of
this competition naturally reflects that fact and organisers provide
participants with three distinct types of datasets: strongly-labelled,
weakly-labelled (indicating the presence, but not the temporal lo-
cation) and unlabelled. Additionally, the entire strongly-labelled
dataset was generated synthetically using Scaper [1], which is a
tool that overlays labelled sound events over each other and a back-
ground to produce strongly-labelled samples.

2. METHODS

2.1. Network architecture

SED problems are commonly modelled using a Convolutional Re-
current Neural Network[2] model. Such architectures combine the
feature extraction ability of convolutional networks and the bias to-
wards learning sequential patterns of recurrent networks. These as-
pects make them well-suited for tackling audio segmentation tasks
where data is inherently a temporal sequence.

The architectures we explored during this competition were all
CRNN’s. We tried several convolutional feature extractors in place
of the default CNN suggested in the baseline and found the 18-layer
ResNet (ResNet-18)[3] to yield the best results, albeit with modest
improvements. Meanwhile, the recurrent section remained a two-
layer bidirectional GRU.

2.2. Training framework

Given the variety of label types (or lack of thereof) the problem
cannot be effectively solved using pure supervised learning, but in-
vites for the application of semi-supervised learning techniques that
take full-advantage of the unlabelled and weakly labelled data. The
baseline system implements a mean-teacher framework[4] which is
one of many possible approaches in semi-supervised learning[5].
The core idea behind it is to teach two models simultaneously: a
student model that is updated from loss via backpropagation and
a teacher model that has its weights calculated as an Exponential
Moving Average (EMA) of the weights of successive generations
of students (hence "mean" in the name).

In mean-teacher the loss consists of two components: consis-
tency loss and cross-entropy loss. Cross-entropy loss requires that
the samples come with strong or weak labels, while consistency loss
is calculated for all samples as a Mean Squared Error (MSE) be-
tween the teacher’s and the student’s prediction on a given sample.
Consistency loss takes advantage of the assumption that real-world
data-to-label mappings are smooth and clustered. Smoothness as-
sumes that if two data points are close together in the sample space
then so should their corresponding labels. The cluster assumption
postulates that data points of the same class form regions of high
density in the sample space that are separated by regions of low
density. This allows the algorithm to use consistency to meaning-
fully extend beyond the region covered by labelled data and learn
from unlabelled samples to improve generalisation.

We found mean-teacher satisfactory for the reasons mentioned
above as well as due to the fact that averaging students produced
an extremely robust teacher model that exhibited very little vari-
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ance between epochs. The teacher model consistently outperformed
the student from the early stages of training, a phenomenon docu-
mented in the literature[4], while improving nearly perfectly mono-
tonically over training steps. Those facts greatly simplified the se-
lection of models from training and reduced variance between runs.

2.3. Gaussian noise injection

Improving model robustness against against random perturbation
is intuitively a way of improving performance of any classifier
and has been shown to improve the generalisation of neural net-
works in particular[6], including in the context of semi-supervised
learning[7]. This is extremely relevant for mean-teacher, which
relies on consistency in incorporating unlabelled data into train-
ing. In fact, previous researchers have investigated ways of inject-
ing designed perturbation into the system in order to smoothen the
output[8].

In mean-teacher noise injection can be achieved by overlaying
a selected perturbation over a sample right before inference through
teacher or student. It might make more intuitive sense to perturb
the student, since the teacher is responsible for generating a ground
truth that we intend the student to match. However, our consistency
loss is symmetric, since we use MSE, so it makes little difference in
practice. Indeed, through all our experiments we found that the re-
sults were very similar irrespective of the injection point. The best-
performing model on scenario 2 (System ID: 2) used the teacher
as the injection point. It is theoretically possible to use both points
simultaneously, yet we did not experiment with it.

The perturbation we selected was simple Gaussian noise ap-
plied to the log-mel spectrogram. We scaled it per sample so that
the perturbation of a pixel in sample S was at most:

pertmax = ϵ ∗ (max(S)−min(S))

where ϵ = 0.1 was empirically found optimal.
We have also experimented with more sophisticated perturba-

tions inspired by Virtual Adversarial Training (VAT)[8]. In VAT,
Miyato postulates that changing the sample in a direction in the in-
put space that leads to greatest variation in the output allows more
efficient output smoothing, as it addresses the anisotropy of the
model. In other words, it assures the model is equally sensitive
to perturbation in all directions by prioritising the most vulnerable
ones first. We attempted to calculate the virtual adversarial pertur-
bation using a Fast Gradient Sign Method (FGSM)[9] and then in-
ject it during consistency loss calculation. Unfortunately, the results
were not as good as for simple Gaussian noise, so this technique was
not used in the submitted system.

2.4. Augmentation methods

We also used 3 simple augmentation methods: pitch shifting, time
warping and adding a brown noise. For pitch shifting, the audio
samples were translated by a random number of semitones from -4
to 4 using the torch-audiomentations implementation1. Time warp-
ing is done by choosing a point in time on spectrogram, and squeez-
ing spectrogram on one side, and stretching on the other side by a
random factor [10]. Adding brown noise is done with function Ad-
dColoredNoise from torch-audiomentations library.

1https://github.com/asteroid-team/torch-audiomentations

3. EXPERIMENTS

3.1. Feature extraction

Before feeding the data to the neural net we transform it into log-
mel spectrogram. Parameters of log-mel spectrogram transforma-
tion are as follows: windows size of 1024, hop size of 256, 128 mel
bins and Hamming windows. The spectogram shape is 626 × 128
for a 10 seconds recording.

3.2. Pipeline and training settings

All experiments are conducted using DCASE 2022 baseline envi-
ronment2. We implemented proposed methods to be compatible
with this repository.

4. RESULTS AND ANALYSIS

We performed multiple experiments to find the best models for Sce-
nario 1 and Scenario 2. Experiments that lead us to the submitted
systems 1 and 2 are shown in Table 1 and Table 2, sequentially
adding new modifications to the training.

For Scenario 1 we only modified baseline with smaller window
size, resnet backbone and pitch shift augmentation. The window
size modification increased PSDS1 by almost 3 percentage points,
pitch shift increased the PSDS1 by 1 pp. The usage of resnet back-
bone did not change PSDS1 that much, but we decided to continue
with it. All modifications also improved PSDS2.

As for Scenario 2, we used more modifications that greatly
boosted PSDS2, but some of them decreased PSDS1 to the point
that this system would not be anywhere near baseline performance.
All modifications and the resulting PSDS1 and PSDS2 are shown
in the Table 2. Weak predictions as a mean over time axis of strong
predictions increased the PSDS2 by 6.5 pp, but at the same time de-
creased PSDS1 by over 20 pp. The reasoning behind simple mean
instead of the attention in baseline architecture was to transfer more
of the class information contained in weak labeled real data. We
also tried using max function instead of mean function, to focus on
the most visible event in the recording, but we got much worse re-
sults for PSDS2. Similarly, time warping resulted in higher PSDS2,
but lowered PSDS1. That is the effect of time warping only audio,
not the strong label matrix. While it resulted in a mismatch in lo-
calisation, it did not diminish PSDS2 since it required a mere 0.1
intersection. We tried time warping both the label matrix and audio
at the same time, but it resulted in a far smaller boost in PSDS2.
Another modification that decreased first scenario metric was usage
of bigger ResNet, that halved time resolution likely further lowered
the resulting PSDS1 score.

Table 1: Path to best Scenario 1 architecture

System ID
Performance Metrics

PSDS1 PSDS2
baseline 0.336 0.536
+ 1024fft 0.364 0.554
+ resnet 0.364 0.554
+ pitch shift 0.374 0.583

2https://github.com/DCASE-REPO/DESED_task
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Table 2: Path to best Scenario 2 architecture

System ID
Performance Metrics

PSDS1 PSDS2
baseline 0.336 0.536
+ 1024fft 0.364 0.554
+ resnet bigger 0.306 0.600
+ brown noise 0.313 0.606
+ time warp 0.289 0.675
+ mean weak predic-
tions

0.052 0.740

+ noise injection 0.056 0.751
+ AST embeddings 0.064 0.794

Table 3: Submitted systems and PSDS scores for both scenarios

System ID
Performance Metrics

PSDS1 PSDS2
1. 0.37433 0.58255
2. 0.06401 0.79380
3. 0.34105 0.59564

5. SUBMISSIONS

Submitted systems are shown in Table 3, we submitted 3 systems.
First is our best in PSDS1, second is our best in PSDS2, and the
last one is the system trained without any external data. Our team-
wise scores on validation dataset are PSDS1: 0.37433 and PSDS2:
0.79380.
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