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Abstract
The task1 of DCASE 2022 put forward higher re-
quirements for system complexity and the new
datasets also brought greater challenges. We tried
to reproduce several models in previous years, but
did not get a good performance. Therefore, we
introduced the depthwise separable CNN method
to the baseline architecture, which successfully re-
duces the complexity and improves the accuracy.
We also used three methods of data augmentation,
mixup, pitch shifting and stretching to further im-
prove the results.

Index terms — Low-complexity acoustic scene
classification, data augmentation, depthwise sepa-
rable convolution, bottleneck, channel shuffle

1 Introduction
The DCASE Challenge held every year is a com-
petitive and top-ranked data challenge in acous-
tic signal processing society. The task1 of this
year is about acoustic scene classification (ASC)
which aims to classify each input audio record-
ing into a pre-given class of acoustic scenes, such
as underground stations, street traffic or public
squares. Acoustic scenes are commonly diffused
with a large amount of mixed information like the
sounds of people talking, car driving, noise etc.
This makes accurate scene prediction difficult and
also an interesting research problem. In this task,
ASC systems must not only have good generaliza-
tion and robustness, but also meet the requirement
of low spatial complexity.

In the dataset for DCASE2022 Challenge task1,
recordings of 10 different acoustic scenes from 12

cities were collected using four different devices, as
well as partially synthesized data created from the
original speech. Comparing with previous years,
each segment from the dataset was split from 10
seconds to 1 second. It brought much greater dif-
ficulty to the task as the information of each seg-
ment was reduced to 1/10 as before, which means
that the classifier needs to make predictions based
on less informative features. At the same time, the
requirements of complexity are stricter this year,
including the limit of parameters to 128k and the
limit of computation to 30MMAC.

We tried to reproduce several models in previ-
ous years, but leading to a worse performance than
baseline system. Therefore, we decided to config-
ure the baseline and make further improvement on
it, and our goal is to reduce the complexity while
maintaining the accuracy.

2 Data Processing

2.1 Dataset

The TAU Urban Acoustic Scene 2022 Mobile de-
velopment dataset contains 230,350 samples [1].
It is worth noting that the 2022 audio files are
one second long, and therefore ten times longer
than the previous data files. Each sample corre-
sponds to one of the ten classes and no sample has
more than one label. This dataset includes a vari-
ety of audio samples collected from three real and
six analogue devices. The main recording device
was from a Zoom F8 recorder with binaural mi-
crophones, and data from the Samsung Galaxy S7
and iPhone SE were also included. The simulated
devices were synthesized by processing the device
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Figure 1: Feature Maps

data. The challenge organizers provided the basic
metadata for the training/test split, with 139,970
samples in the training set and 2,9680 samples in
the test set. the evaluation dataset for the TAU
Urban Acoustic Scene 2021 Mobile contains 65,533
samples and also includes audio data from the Go-
Pro Hero5 Session and five Audio data from new
devices such as analogue devices

2.2 Feature Extraction

All audio segments were formatted mono, 44khz
sample rate, 24 bit resolution per sample. For
each 1 second input segment, 2048 FFT points
were performed for every 1024 samples and the
power spectrum was extracted. It means that the
number of bins for a power spectrum is 51. The
log-Mel filter bank features of 128 frequency bins
were then extracted and the mean and variance
normalised for each frequency bin. As a result, an
input feature has a shape of 128 x 51 x 1.

2.3 Data Augmentation

Due to the limited complexity of the model, we
believe that data expansion is an important way
to increase the generalization of the system[2][3].
We operate on the data as follows:

1. Pitch shift and speed change: For each train-
ing audio recording, we randomly change
their pitch and speed.

2. Mix audios: Inspired by[3] , we randomly mix
two audio recordings from the same acous-
tic scene, with the goal of simulating more
devices, smoothing the transition among de-
vices, and reducing the variance among de-
vices.

3. Spectrum correction: The spectrum of the
reference device are obtained by averaging the

spectrum of all the training devices except de-
vice A. Then use the spectrum of the reference
device to correct the spectrum of device A.

3 Model Architecture

The model architecture is based on the baseline
system and finalized through step-by-step mod-
ification and debugging. As shown in Figure 1
and Table 1, the model contains four components.
The input component utilized a 7x7 convolutional
layer followed by batchnorm and ReLu to expand
the number of channels, and includes a max-pool
layer. Then it is followed by two identical DW
components, each DW contains 1 or 2 Depth-
wise Block and a max-pool layer. Finally, the
output component is consistent with the base-
line, which contains a flatten layer and two linear
layers. To accommodate the domain diversity of
acoustic scene inputs, the model uses a max-pool
layer to narrow the feature map instead of dilation
[4].

Architecture Input Shape
Input ConvolutionBlock 128x51x1

MaxPool2d(4, 5) 128x51x16
DepthwiseBlock 32x10x16

DW1 (DepthwiseBlock) 32x10x16
MaxPool2d(4, 3) 32x10x32
DepthwiseBlock 8x3x32

DW2 (DepthwiseBlock) 8x3x32
MaxPool2d(4, 3) 8x3x64

Flatten 2x1x64
Output LinearBlock 128

Output 10

Table 1: Architecture
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Model Data Aug Shuffle MACS/M Params/K Log_loss Accuracy%
Baseline - - 29.24 46.51 1.575 42.9

DepthwiseBlock(2) N N 7.31 35.93 1.617 45.2
DepthwiseBlock(2) N Y 7.31 35.93 1.710 44.2
DepthwiseBlock(2) Y N 7.31 35.93 1.410 48.4

Performance - - -75% -23% -10% +13%
DepthwiseBlock(1) N N 6.29 25.53 1.551 45.6
DepthwiseBlock(1) N Y 6.29 25.53 1.578 46.2
DepthwiseBlock(1) Y N 6.29 25.53 1.350 49.5

Performance - - -79% -45% -14% +15%

Table 2: Performance

3.1 Bottleneck

Bottleneck [5][6][7] has been widely utilized in a
number of networks and obtain a good perfor-
mance, which is a 1x1 group convolutional layer
put at the first position. The groups of bottleneck
equals to the input channels. As shown in Figure
2, the Depthwise Block in our model consists of
a bottleneck and a Depthwise Convolution. The
bottleneck also plays a role in the expansion of the
amount of channels.

3.2 Depthwise Convolution

As the Figure 2 shows, Depthwise Block [8] [7]
[9] utilizes the depthwise separable convolution.
It consists of two layers, a 7x7 Depthwise convo-
lutional layer followed by a batchnorm [10] and
a non-linear activation function SiLu [11], and a
1x1 Pointwise convolutional layer followed by a
batchnorm and a non-linear activation function
ReLu. The Depthwise convolutional layer is actu-
ally a multi-channel group convolution [12], which
means that the feature map is evenly divided to
the number of the channels, and passed to the
same number of convolutional layers, then the out-
puts are concatenated. Group convolution can ef-
fectively reduce the number of Mult-Adds to meet
the requirements of this year’s challenge. The
Pointwise convolutional layer is a 1x1 convolu-
tional layer served as a fully connected layer, which
has the most parameters of the Depthwise Block
[7].

3.3 Channel Shuffle

After the group convolution of bottleneck, the fea-
ture map of different channels are seperated and
have no relations with each other. It obviously
reduces the computation to a large extend, but
results in the information loss between channels.
The channel shuffle method [9] tries to build re-
lationships between channels by reconstruct the

information structure. It is optional in the Depth-
wise Block.

Figure 2: Depthwise Block

4 Result

Training and testing was carried out using the
splits provided by the official development dataset.
We trained the model for 200 epochs by using
Adam optimizer with a learning rate of 0.001,
batch size to 32. We applied two strategies for
the DW components, with 1 Depthwise Block or
2 Depthwise Blocks in it. And for each strategy,
data augmentation and channel shuffle used or not
were the sub-strategies, which led to final results.
The table 2 shows the performance of the model
and baseline. Our model got better accuracy and
loss as the baseline while achieved much less com-
plexity.

5 Conclusion

In this technical report, we describe our low-
complexity model for the acoustic scene classifi-
cation task. The log-mel filter bank features were
extracted from dataset and applied a series of data
augmentations. Depthwise separable CNN, bot-
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tleneck and channel shuffle methods successfully
reduced the complexity of our model while im-
proving the performance. In further works, we will
keep trying to enhance the accuracy and decrease
the complexity to achieve the best balance.
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