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ABSTRACT 

This technical report describes our system for task 1 (Low-Com-
plexity Acoustic Scene Classification with Multiple Devices) of 
the DCASE2022 Challenge. In our method, the BC-ResNet-Mod 
is used as the backbone network, and the Cross-Gradient training 
strategy is adopted for network training. In addition, some tech-
niques of data augmentation are employed to enlarge the diversity 
of dataset, such as mix-up, spectrum correction, pitch shift and 
spectrum augmentation. Our system achieves the accuracy rate of 
51.1% on the development dataset. 
Index Terms— Acoustic scene classification, Convolution neural 
network, BC-ResNet 

1. INTRODUCTION 

Acoustic scene classification (ASC) is a task to classify each 
input audio recording into one class of pre-given acoustic scenes. 
As an important task in Detection and Classification of Acoustic 
Scenes and Events (DCASE), ASC has attracted a lot of attention 
from researchers in the community of audio and acoustic signal 
processing in recent years [1]-[4]. In the work of this report, we 
focus on the task of low-complexity ASC with multiple devices, 
namely, Task 1 of the DCASE2022 challenge [5]. In this task, a 
low-complexity model is required to classify audio recordings rec-
orded by multiple devices (real and simulated).  

In the proposed ASC method, the BC-ResNet-Mod [6] is used 
as the backbone of our model whose training strategy is the Cross-
Gradient Training (CGT) [7]. In addition, some data augmentation 
techniques are adopted for further improving the performance of 
the proposed method. The size of our model is 125.33 KB after 
model compression, which is lower than the size limit of 128 KB. 
Evaluated on the development dataset, our system obtains classi-
fication accuracy of 51.1%. 

2. DATA AUGMENTATIONS 

Data augmentation is an effective way to improve the generali-
zation ability of the ASC system. The techniques of data augmen-
tation adopted in our system are described as follows.  

2.1. Mix-up 

 Mix-up is an effective way for performance improvement and 
is easy to be implemented [8]. Mix-up makes the model behave 
linearly among different training samples. This linear modeling 
technique reduces the inadaptability of the model on training sam-
ples. Our practice is slightly different from original mix-up tech-
nique, but their overall idea is the same. We load two batches of 

audio recordings into memory and process them by 𝑋′ = 𝜆𝑋 +(1 − 𝜆)𝑋 , where 𝑋  and 𝑋  are two batches of audio recordings 
from the shuffled training data, and λ obeys the Beta distribution. 
Namely, λ ~ Beta (α, α) and α is set to 0.4 here.  

2.2. Spectrum correction 

Spectrum correction demonstrates moderate device adaptation 
properties [9]. However, in this work, it is adjusted before it is ap-
plied for ASC. The spectrum correction in this work aims at trans-
forming the given input spectrum into a corrected spectrum using 
an ideal device (a reference device). The implementation of spec-
trum correction consists of two steps. First, we need a correction 
coefficient which can be obtained by calculating the average of n 
pairs of aligned spectra. The correction coefficient of device A to 
the reference device is the ratio of the frequency response of the 
reference device to the frequency response of device A. The fre-
quency response of the reference device is the average of the fre-
quency responses of multiple devices. In the second step, the cor-
rected spectrum of device A can be obtained by multiplying the 
correction coefficient with the original spectrum of the audio re-
cordings recorded by device A. 

2.3. Pitch shift 

Pitch shift is to resample the original audio recordings at differ-
ent sampling frequencies with a certain step size. The pitches of 
audio recordings recorded by different devices are generally dif-
ferent to each other, which is helpful for ASC. Hence, pitch shift-
ing is performed before extracting log-Mel spectrograms from au-
dio recordings. 

2.4. Spectrum augmentation 

Spec augmentation modifies the spectrum by distorting the 
time-domain signal, masking the frequency-domain channel, and 
masking the time-domain channel. This enhancement method can 
be used to increase the robustness of the network to resist the de-
formation in the time domain and the loss of some segments in the 
frequency domain. 

3. METHOD 

3.1. Model architecture 

3.1.1. BC-ResNet-Mod 
The BC-ResNet-Mod is used as the backbone of our model, 

whose architecture is shown in Figure 1. The audio feature is fed 
into a 55 convolution layer with a 22 stride, and further trans-
formed at several BC-Resblock [10] and max pooling layers. Be-
fore average pooling, a 11 convolution layer is adopted to in-
crease the number of channels of the feature maps to 256. As a 
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result, the representation ability of the feature maps can be im-
proved. Finally, the prediction vector is output by a fully-con-
nected layer. In Figure 1, the numbers in each bracket (e.g., [40, 
64, 22]) indicate the shape of the feature maps output by the mod-
ule, which respectively represents the number of channels (e.g., 
40 in [40, 64, 22]), length (e.g., 64 in [40, 64, 22]) and width (e.g., 
22 in [40, 64, 22]) of the feature map from left to right. The last 
fully-connected layer outputs a 10-dimensional vector. 

5×5 Conv2D [40, 64, 22]

BC-ResBlock [20, 64, 22]

Audio feature [3,128,44]

BC-ResBlock [30, 32, 11]

BC-ResBlock [40, 16, 6]

BC-ResBlock [50, 16, 6]

AvgPooling [256, 1, 1]

Fully-connected [10]

1×1Conv2D [256, 16, 6]

MaxPooling [20, 32, 11]

MaxPooling [30, 16, 6]

 
Figure 1. The architecture of the network backbone. 

3.1.2. ResNorm 
Since the experimental data come from different devices, there 

are obvious differences in the audio samples collected by different 
devices. The difference is more obvious on the frequency axis of 
the log-mel spectrum. The experiments in [11] show that the 
FreqIN (instance normalization by frequency) can effectively im-
prove the robustness of the model to different devices. FreqIN is 
defined by 

,                          (1) 

where  and  denote mean and standard deviation of the in-
put feature , respectively, and  is a minimum 
number that prevents division by zero.  and  are defined by  

 ,                                (2) 

,                    (3) 

where N, C, F, and T denote batch size, number of channels, fre-
quency dimension, and time dimension, respectively.  

Due to the introduction to the FreqIN, some information con-
tained in categories may be lost during the procedure of regulari-
zation. An identity of original feature maps is added to make the 
information more comprehensive, as given by 

                   (4) 
where  denotes a constant coefficient.  

3.1.3. Cross-gradient training 
The CGT makes the model have better generalization ability by 

superimposing the disturbance related to recording device’s infor-
mation on the data and expanding the recording device’s infor-
mation in the training set. The CGT parallelly trains a scene and 
a device classifier on examples perturbed by loss gradients of each 

other’s objectives. The loss value in the device classification part 
represents the device information. Therefore, the gradient of the 
loss value with respect to the original input data is the mapping of 
the device information to the category space. After the gradient is 
superimposed on the original input, the corresponding device in-
formation will change. 

3.2. Model compression 

Two techniques are used to implement model compression, in-
cluding quantization aware training and knowledge distillation.  

3.2.1. Quantization aware training 
The computational complexity is measured in terms of param-

eter count and MMACs (million multiply-accumulate operations). 
Maximum number of parameters is 128K, and the used variable 
type is fixed into INT8, counting all parameters (including the 
zero-valued ones). Maximum number of MMACs per inference: 
30 MMACs (million MACs). Considering of the parameter limi-
tation required by the organizer of DCASE 2022, we utilize quan-
tization aware training to obtain a model with better performance. 
Quantization aware training is to insert a fake quant module into 
the model to simulate the rounding and clamping operations of the 
quantization model in the reasoning process. As a result, the 
adaptability of the model to the quantization effect can be im-
proved, and higher accuracy of the quantization model can be ob-
tained in the training process. In this process, all calculations (in-
cluding model forward and back propagation calculation and 
pseudo quantization node calculation) are realized by floating-
point calculation, and are quantized to the real INT8 model after 
the training is completed. 

3.2.2. Knowledge distillation 
Knowledge distillation can be used to generate a small model 

using the supervision information of a large model with better per-
formance. A pretrained model [12] is used as the teacher model, 
and is then finetuned on the DCASE data. Afterwards, the trained 
teacher model is used to guide the training of the small model. 

4. EXPERIMENTS 

4.1. Experimental setup  

4.1.1. Datasets 
The development dataset consists of training subset and valida-

tion subset. The development dataset contains audio recordings 
from 10 cities and 9 devices: 3 real devices (A, B, C) and 6 simu-
lated devices (S1-S6). Audio recordings recorded by devices B, C, 
and S1-S6 are composed of audio segments that are randomly se-
lected from simultaneous recordings. Hence, all of these audio re-
cordings overlap with the audio recordings from device A, but not 
necessarily with each other. The total amount of audio recordings 
in the development dataset is 64 hours. Some devices appear only 
in the validation subset.  

The file information of all audio recordings are as follows: 44.1 
kHz sampling rate, and mono channel. Audio recordings are first 
divided into frames via a Hamming window whose length is 2048 
with 50% overlapping. Short-time Fourier transform is then per-
formed on each frame for obtaining linear power spectrum which 
is finally smoothed with a bank of triangular filters for producing 
log-Mel spectrogram. The center frequencies of these triangular 
filters are uniformly spaced on the Mel-scale. In addition, to en-
hance the discriminative ability of audio feature, the delta and 
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delta-delta coefficient of the log-Mel spectrogram are calculated. 
Then, they are stacked along channel axis and used as the input 
feature of the model. The final size of input features is: 128 × 423 
× 3, where 128, 423 and 3 represent numbers of frequency-band, 
frame and channel, respectively.  

4.1.2. Implementation details 
All experiments in this work are conducted using the toolkit of 

PyTorch. The optimizer is the stochastic gradient descent, and the 
categorical cross-entropy loss is used. All models are trained 200 
epochs with a batch size of 512. In addition, the learning rate is 
set to 0.1, along with a decay factor of 1e-5. At the epoch of 4, 8, 
16, 32, 64, and 128, the learning rate is reset for obtaining the re-
training effect. Different retraining from scratch can improve the 
training speed of the model, and the training results remain con-
sistent. We use the checkpoint with the highest validation accu-
racy as the best model. 

4.2. Experimental results 

The validation set for the development dataset contains 29680 
audio clips, and there are new devices. We calculate the overall 
accuracy and evaluation indexes, such as log-loss on development 
dataset. Table 1 shows the class-wise accuracy and log-loss ob-
tained by our model. Table 2 presents the device-wise log-loss. 
Figure 2 gives the confusion matrix of our method on validation 
set. It can be seen that metro, public square and street pedestrian 
are easily confused to each other. The number of parameters of 
our model is 125.33 K. The size of our model after quantization 
compression is 125.33 KB, and the number of MACS is 8.637 M. 

Table 1. The class-wise accuracies of proposed method 

Class 
Baseline %) Proposed %) 

Acc（%） Log-loss Acc（%） Log-loss

airport 39.4 1.534 49.3 1.365 

bus 29.3 1.758 60.5 1.192 

metro 47.9 1.382 40.2 1.642 

metro station 36.0 1.672 41.5 1.600 

park 58.9 1.448 71.1 1.129 

public square 20.8 2.265 31.0 1.909 

shopping mall 51.4 1.385 52.3 1.339 

street pedestrian 30.1 1.822 36.9 1.915 

street traffic 70.6 1.025 74.2 0.888 

tram 44.6 1.462 53.5 1.426 

average 42.9 1.575 51.1 1.441 

 

Table 2. The device-wise accuracies of proposed method 
Device Baseline Proposed 

A 1.109 1.204 
B 1.439 1.528 
C 1.374 1.297 
S1 1.621 1.500 
S2 1.559 1.438 
S3 1.531 1.435 
S4 1.813 1.445 
S5 1.800 1.598 
S6 1.931 1.521 

 
Figure 2. Confusion matrix of our method on validation set. 

5. CONCLUSIONS 

We proposed an ASC method using a BC-ResNet-Mod as the 
backbone network and adopting the strategy of CGT to training 
the network for alleviating device mismatch. In addition, some 
data augmentation techniques were adopted for further improving 
the performance of the proposed method. The size of our model is 
125.33 KB after model compression, which is lower than the size 
limit of 128 KB. Evaluated on the development dataset, classifica-
tion accuracy of 51.1% was obtained by the proposed method.  
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