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ABSTRACT

This paper address the Hanyang University team submission for the
DCASE 2022 Challenge Low-Complexity Acoustic Scene Classi-
fication task. The task aims to design a generalized audio scene
classification system for various devices under low complexity and
short input time conditions. We follow two strategies to achieve
our goal: improving the model structure for short segmented au-
dio and adopting transfer learning methods that are generalizable
to unknown devices. Based on the BC-ResNet, which showed the
best performance in DCASE 2021 challenge, we incorporate the
method proposed in the field of short-duration speaker verification
to secure high accuracy. In addition, we propose a novel fine-tuning
method using device-aware data-random-drop to get a generalized
model across multiple devices. Most of the training dataset is data
recorded with one specific device. Therefore, we devised a fine-
tuning method that gradually excludes data recorded with a spe-
cific device from mini-batch during training. Following the official
protocol of cross-validation setup from the TAU Urban Acoustic
Scenes 2022 Mobile development dataset, we achieved 70.1% ac-
curacy and 0.835 multi-class cross-entropy loss, respectively.

Index Terms— Acoustic scene classification, device imbal-
ance, fine-tuning, short audio, knowledge distillation, quantization
aware training

1. INTRODUCTION

Among the various intriguing tasks DCASE2022 challenges, we fo-
cus on Task 1: Low-Complexity Acoustic Scene Classification with
Multiple Devices [1,2]. Audio Scene classification (ASC) is the task
that has the objective of categorizing sound scenes. ASC is applied
in various fields, including context-aware services, surveillance, and
improving the performance of audio event detection tasks [3–5].
This year is similar to DCASE 2021 Challenge Task 1A in many
aspects. However, unlike last year, the duration of the audio data is
shortened to 1 second, so the acoustic scene is inferred only from
a short segment [6, 7]. Additionally, a limit on the number of al-
lowed multiply-accumulate operations (MACs) has been added; the
number of MACs should be up to 30M. The requirements for sys-
tem complexity are also different from 2021 Task 1. The number
of model parameters needs to be smaller than 128K, and the model
parameters variable type should be fixed into INT8.

In this work, we propose a lightweight model that effectively
works on short segmented audio and a learning strategy that can

*Equal contributions.

increase generalization capabilities for multiple devices. First, we
introduce the BC-Res2Net backbone structure converted from the
Res2Net structure [8] into broadcast learning [9] to train multi-scale
representations. Moreover, multi-scale frequency channel attention
(MFA) structure [10] and feature pyramid module (FPM) [11], pro-
posed in the speaker verification field and are effective for extracting
and aggregating the features from short speech signals, are applied
to the BC-Res2Net based ASC model. Second, we suggest a novel
fine-tuning method using device-aware data-random drop, which
improves the generalization ability across multiple devices by ex-
cluding several data of the selected device in batch-level processing.
We selected a specific device with the most records from the training
dataset. Then, we increase the generalization capability for unseen
devices by gradually excluding the data recorded with specific se-
lected devices from the batch. We also applied quantization-aware
training [12] and knowledge distillation [13] to reduce memory use
and misclassification in confusing pairs of scenes, respectively The
proposed methods were evaluated on the official cross-validation
setup of the TAU Urban Acoustic Scenes 2022 Mobile development
dataset.

The remainder of this paper is organized as follows. Sections 2
and 3 describe the proposed ASC model architecture and efficient
fine-tuning strategies. Section 4 presents the experimental setup.
Finally, the results and discussion of the study are in Section 5.

2. ASC SYSTEM FRAMEWORK

2.1. Datasets

DCASE 2022 Challenge Task 1 allows using the TAU Urban Acous-
tic Scenes 2022 Mobile development dataset [1]. All audios are in a
single-channel 44.1kHz 24-bit format, and each segment is cropped
into 1 second. Audios are recorded with three real devices (A, B,
and C) and six simulated devices (S1-S6). The development dataset
consists of 230,350 audio segment recordings from 10 cities in 10
acoustic scenes: ”airport,” ”shopping mall,” ”metro station,” ”street
pedestrian,” ”public square,” ”street with traffic,” ”park,” and trav-
eling by ”tram,” ”bus,” and ”metro.” The dataset is separated with a
provided validation policy [2] into training and test subsets consist-
ing of 139,970 and 29,680 segments, respectively. In the training
subset, data of device A occupies 73% of the total, whereas in the
test set, the data from all devices are evenly distributed, and devices
S4-S6 are unseen in training. The evaluation set uses an additional
two cities and five devices. Specifically, real device D and simulated
devices (S7-S11) are not included in the development data.
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2.2. Preprocessing

We extract input features through three processes: down-sampling
to 16kHz, acoustic feature extraction, and data augmentation.
Specifically, the acoustic features are 256-dimensional log Mel
spectrograms extracted with 2048 samples of Hanning window and
512 samples shift. Input features are randomly rolled along the
temporal axis with a range of -0.5 to 0.5 seconds and pasted the
out-of-range part to the opposite side. Specaugment [14] with two
frequency and two temporal masks are adopted for data augmenta-
tion, and each is applied with a probability of 0.8. Mask parameters
of 40 and 4 are used for frequency masks and temporal masks, re-
spectively. Mixup [15] with α = 0.3 is also applied to the acoustic
feature space.

2.3. Proposed ASC model architecture

Broadcast residual learning [9] extracts two feature maps specific to
frequency and temporal dimension through frequency-wise 2D and
temporal-wise 1D convolution. These feature maps are combined
with backbone structures such as ResNet [16] and Transformer [17]
to be used as state-of-the-art models in keyword spotting, speaker
recognition, and ASC fields [9, 18, 19]. In particular, in DCASE
2021 challenge Task 1A, the system with the best performance mod-
ified the BC-ResNet [9] by using max-pool layers and limiting the
receptive field. Also, ResNorm was proposed to perform normal-
ization for each frequency band in the residual path [19]. In this
work, we adopt the concept of splitting the bottleneck convolution
block of the Res2Net structure to the BC-ResNet since the Res2Net
achieves more efficient computations than the traditional convolu-
tions by constructing hierarchical residual-like connections within
a single residual. To be specific, we divided the feature maps into
four equal subsets. Each feature subset has the same frequency and
temporal dimension as the input feature map but 1/4 the number
of channels. Except for the initial subset, each has a corresponding
convolution. The feature subset is added with the previous output of
the subset convolution and then fed into the subsequent convolution.
Note that all frequency-wise 2D convolution and temporal-wise 1D
convolution of BC-ResNet block to Res2Net style. Therefore, BC-
Res2Net not only effectively obtains frequency and temporal fea-
tures by Broadcast learning but also operates in a multi-scale man-
ner with low computational complexity.

Recently, in speaker verification, the method of reweighting
the input feature map using the attention mechanism and aggre-
gation method, which merged the features from multiple stages of
the backbone structure into one, were studied to overcome the de-
grade under short utterance scenarios. MFA and FPM are repre-
sentative methods, and we modify the networks to be appropriate
for the audio scene classification task and then combine them with
BC-Res2Net. The overall proposed architecture is shown in Table
1. In [10], MFA was applied only before feeding into the backbone
network. We also reweight the output using ResNorm followed by
MFA for every four stages, composing BC-Res2Net. Reweighted
outputs via MFA are upsampled with the same size as the output of
stage 1. Then aggregated into a single feature map in a bottom-up
pathway by FPM [11].

Table 1: Architectures of proposed BC-Res2Net based ASC mod-
els. C, F , and T denote the number of convolution channel, fre-
quency bins, and time sequences, respectively. Input feature size is
1× F × T

Output size Stage Operator

2C × F/2× T/2 Stem Conv2D
[
5× 5

]
, stride 2

BatchNorm + MFA

C × F/2× T/2 Stage 1 BC-Res2Net × 2
ResNorm + MFA

1.5C × F/4× T/4 Stage 2
Max-pool

[
2× 2

]
BC-Res2Net × 2
ResNorm + MFA

2C × F/8× T/8 Stage 3
Max-pool

[
2× 2

]
BC-Res2Net × 2
ResNorm + MFA

2.5C × F/8× T/8 Stage 4 BC-Res2Net × 3
ResNorm + MFA

4C × 1× 1 Aggregation FPM
10× 1× 1 Classifier Linear

3. TRAINING STRATEGY

3.1. Quantization Aware Training

We have to apply quantization to fix the parameter variable type
into INT8. We utilized quantization aware training (QAT) [12, 20],
which performs floating-point calculations during training but sim-
ulates the effect of INT8 with a fake quantization module through
clamping and rounding. We used the QAT plugin provided by
the PyTorch-lightning library [21] for QAT. Default values were
used for all QAT settings, and layer fusion was applied to all
Convolution-BatchNorm-ReLU sequences in the model. After QAT
was completed, the inference was performed with the quantized
converted model.

3.2. Knowledge Distillation

Knowledge distillation (KD) [13, 22, 23] have been shown effec-
tive for the ASC task to maintain the performance even with low
complexity. The KD is generally used for model compression, but
we used it for generalization to devices, as in [19]. We trained the
teacher model using the entire development set without validation,
and the student model was trained on the original cross-validation
setup. The experiment was conducted as a case where the size of
the teacher model was set to twice the size of the student model and
a case where the channel size was set to be the same as the student
model.

3.3. Proposed fine-tuning method using device-aware data-
random-drop

The ASC model spends more effort representing device A than
other devices since device A takes up a big percentage of the
training dataset. This can reduce the generalization power across
different devices. In this work, we use a fine-tuning strategy
with device-aware data-random-drop to mitigate the data imbal-
ance problem. First, regular model training is performed until the
validation loss converges and model parameters are saved. Dur-
ing fine-tuning, saved parameters are loaded except for the clas-
sifier layer. Then, fine-tuning begins with the device-aware data-



Detection and Classification of Acoustic Scenes and Events 2022 Challenge

Table 2: Overall top-1 test accuracy and device-wise log loss comparison of KD and proposed fine-tuning method on the TAU Urban
Acoustic Scenes 2022 Mobile development dataset. (Acc. indicates top-1 test accuracy)

Systems KD Fine-tuning Device Average
(λ) A B C S1 S2 S3 S4 S5 S6 log loss / Acc.

✗ ✗ 0.938 1.065 1.007 1.203 1.217 1.122 1.610 1.350 1.395 1.193 / 60.3%
✗ 0.04 0.769 0.969 0.924 1.082 1.164 0.997 1.423 1.191 1.273 1.072 / 62.2%

BC-Res2Net ✗ 0.4 0.797 0.963 0.906 1.050 1.185 0.972 1.371 1.185 1.290 1.066 / 62.6%
w/ MFA large ✗ 0.955 1.059 1.029 1.164 1.288 1.048 1.452 1.225 1.358 1.157 / 61.7%
w/ FPM (C=80) 0.4 0.709 0.950 0.875 0.970 1.103 0.924 1.287 1.112 1.253 1.005 / 64.9%

small ✗ 0.617 0.771 0.762 0.853 0.854 0.794 1.240 0.910 1.130 0.873 / 69.2%
(C=40) 0.4 0.585 0.759 0.709 0.833 0.855 0.746 1.240 0.899 1.070 0.835 / 70.1%

random-drop method. The proposed method randomly drops the
labeled data with device A in every mini-batch. As a result, the
model can achieve generalization for multiple devices by using
other devices(B-S3) more often than pre-trained. However, fine-
tuning with few data of device A lead to ASC performance degra-
dation since the number of training data is significantly reduced.
Therefore, we design the method to become gradually more fit with
minority devices by increasing the drop rate step by step. We con-
figure the drop rate to increase along with the shape of the sigmoid
function at every epoch from 0 to the given parameter. Further-
more, we add regularization to the loss to prevent overfitting for
other devices(B-S3). The regularization focuses on minimizing the
square weight difference between the pre-trained model and the
model after fine-tuning to avoid excessive device A information loss
and class collapse.

4. EXPERIMENTAL SETUP

We set the channel size C of the proposed BC-Res2Net ASC model
as 40. The subspectral normalization [24] with four numbers of
subbands and ResNorm with 0.1, the hyperparameter of the identity
shortcut path, were also applied to BC-Res2Net. In the pre-training
phase, teacher and student models were trained for 300 epochs us-
ing the AdamW optimizer [25] with a weight decay of 0.05, and
the mini-batch size was set to 512. The warmup [26] was applied
where the learning rate linearly increased from 1e-8 to 0.01 over
the first ten epochs and decayed to zero with a cosine annealing
scheduler [27]. However, in the fine-tuning phase, an AdamW op-
timizer with weight decay of 1e-8 and a fixed learning rate of 1e-5
was used. The device A data were excluded with a maximum drop
rate of 0.9 from every mini-batch by applying the device-aware data
random drop method. The scaling factor of regularization λ was set
to 0.04 and 0.4, and the results for each case were submitted. The
mixup was disabled to correct the mismatch between training and
test conditions. The quantization-aware training was applied in both
training phases, and all experiments were implemented using the
PyTorch library [28] and trained using a single NVIDIA RTX 3090
GPU with 24GB memory. We evaluated the result in terms of top-1
test accuracy and multi-class cross-entropy (log loss) since the log
loss had been chosen as the evaluation metric of the competition.

5. RESULT & DISCUSSION

The DCASE 2022 challenge allowed submitting four results. We
submitted four BC-Res2Net-based models trained with different
training conditions are as follows:

• The model without KD, fine-tuning with λ of 0.04.

• The model without KD, fine-tuning with λ of 0.4.

• The model with large teacher model KD, fine-tuning with λ of
0.4.

• The model with small teacher model KD, fine-tuning with λ of
0.4.

The proposed BC-Res2Net with MFA and FPM had 126.6K
model parameters and 27.76 million MACs, and it satisfied the
competition conditions. Table 2 summarizes the result of four sys-
tems based on the proposed model architecture that we submitted.
We also compared the performance of the submitted model and the
model without fine-tuning. Note that teacher models were trained
with both train and test datasets. The teacher models generated a
more fitting feature on the test dataset, and student models were
trained to track it; Thus, the overall device performance increased.
Comparing the models with KD, the using smaller size teacher ob-
tained better performance than the larger size teacher.

The models which were trained with the proposed fine-tuning
method outperformed the pre-trained model in both accuracy and
log loss both with and without KD modeling. For the models
with fine-tuning only, λ of 0.04 achieved relative improvements of
10.6% and 3.2% in terms of average log loss and accuracy com-
pared with the pre-trained model. Especially device-wise log loss
on unseen (S4-S6) relative improved by 11.8%, 11.8%, and 8.7%,
respectively. These results support that our proposed fine-tuning
method benefited the generalization of multiple devices. Similar
results were also obtained where KD with a large or small teacher
model was applied.
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