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ABSTRACT 

In	this	technical	report,	we	describe	our	submission	system	for	
DCASE	2022	Task4:	sound	event	detection	and	separation	in	
domestic	 environments.	 The	 proposed	 system	 is	 based	 on	
mean-teacher	 framework	 of	 semi-supervised	 learning	 and	
neural	networks	of	CRNN.	We	employ	consistency	training	of	
interpolation	 (ICT),	 shift	 (SCT),	 and	 clip-level	 (CCT)	 to	 en-
hance	the	generalization	and	representation.	A	multiscale	CNN	
block	is	applied	to	extract	various	features	to	mitigate	the	in-
fluence	of	the	event	length	diversity	for	the	network.	An	effi-
cient	channel	attention	network	(ECA-Net)	and	attention	pool-
ing	 enable	 the	model	 to	obtain	definite	 sound	event	predic-
tions.	To	further	improve	the	performance,	we	use	data	aug-
mentation	including	mixup,	time	shift,	and	filter	augmentation.	
Our	best	system	achieves	the	PSDS-scenario1	of	36.20%	and	
PSDS-scenario2	of	63.45%	on	the	validation	set,	significantly	
outperforming	 that	 of	 the	 baseline	 score	 of	 32.93%	 and	
53.22%,	respectively.	 

Index Terms— sound	event	detection,	CRNN,	semi-super-
vised	 learning,	 consistency	 training,	 mean-teacher	 model,	
channel	attention,	pooling	function	 

1. INTRODUCTION 

This	 technical	 report	 describes	 our	 submission	 system	 for	
DCASE	2022	Task4:	Sound	Event	Detection	(SED)	and	separa-
tion	in	domestic	environments.	The	goal	of	this	task	is	to	build	
a	SED	system	to	detect	sound	events	and	time	boundaries	in	
Scenario	1	(react	fast)	and	Scenario	2	(avoid	class	confusion)	
by	using	a	large	amount	of	weakly	labeled	and	unlabeled	data.	
In	this	task,	we	employ	a	neural	network	and	multiple	strate-
gies	as	below	(Figure	1):		
• CRNN	[1]	model.		
• Multiscale	CNN	blocks	[2]	to	extract	various	features.		
• Consistency	 training	 of	 interpolation	 (ICT)	 [3],	 shift	

(SCT)	[4],	and	clip-level	(CCT)	[5]	to	enhance	model	ro-
bustness.		

• Efficient	 channel	 attention	 network	 (ECA-Net)	 [6]	 to	
pay	more	attention	to	important	features.		
	

To	further	improve	the	performance,	we	implement:		
• Data	augmentation	methods	including	mixup	[7],	time	

shift,	and	filter	augmentation	[8]	to	increase	data	diver-
sity.		

	
	
	

• Adaptive	 post-processing	 to	 effectively	 smooth	 net-

work	output.	

Figure	1:	The	proposed	sound	event	detection	system	struc-
ture. 

2. PROPOSED METHODS 

2.1.	Network	architecture	 

2.1.1.	CRNN	 

The	convolutional	recurrent	neural	network	(CRNN)	is	similar	
to	DCASE	2022	Task4	baseline	architecture,	which	consists	of	
7	layers	of	CNN	blocks	and	2	layers	of	bidirectional	gated	re-
current	unit	(GRU),	as	shown	in	Figure	2(a).	We	try	to	add	pre-
ECA	layer	before	the	CNN	blocks	as	a	way	to	preprocess	the	
input,	as	shown	in	Figure	2(b).	A	CNN	block	contains	the	con-
volutional	 layer,	 batch	 normalization	 (BN),	 Rectified	 Linear	
Unit	(ReLU)	activation,	and	average-pooling	(AvgPool)	layer.	
The	input	mel-spectrogram	passes	learnable	convolution	ker-
nels	and	output	the	feature	maps.	BN	and	ReLU	activation	are	
intended	to	speed	up	and	stabilize	training.	AvgPool	calculates	
the	average	for	each	patch	of	the	feature	map	and	downsam-
ples	feature	dimensions	along	both	the	time	axis	and	the	fre-
quency	axis.	Then,	RNN	layers	capture	the	long-term		
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contextual	information.	Finally,	the	SED	classifier	consists	of	a	
fully	connected	layer	and	sigmoid	function	to	discriminate	the	
sound	event	types.		

2.1.2.	Multiscale	CNN	 

From	strongly	labeled	training	data,	we	estimate	duration	of	
each	 sound	 event	 as	 below.	 0∼2s:	 alarm/bell/ringing,	 cat,	
dishes,	 dog,	 and	 speech.	 4∼6s:	 blender	 and	 running	 water.	
7∼10s:	 electric	 shaver/toothbrush,	 frying,	 and	 vacuum	
cleaner.	The	length	of	sound	events	is	various	and	cause	the	
model	to	work	with	inconsistent	accuracy	for	the	event	of	dif-
ferent	 scales.	Thus,	we	 refer	 to	 [2]	 to	apply	different	kernel	
sizes	to	build	a	multiscale	CNN	block	to	capture	the	richer	fea-
tures,	as	Figure	2(c).	A	multiscale	CNN	block	contains	the	ker-
nel	size	of	1x1,	3x3,	5x5	and	uses	addition	to	integrate	features	
of	different	scales.	 

2.1.3.	Efficient	Channel	Attention	 

The	effect	of	the	acoustic	feature	extraction	largely	determines	
the	model	ability	to	predict	different	sound	events	and	affects	
the	 final	classification	result.	However,	 the	attention	mecha-
nism	can	make	the	model	pay	more	attention	to	areas	which	
may	be	important	features,	and	improve	the	model	ability	to	
distinguish	features	of	sound	events.	We	combine	the	efficient	
channel	 attention	 network	 (ECA-Net)	 [6]	 in	multiscale	 CNN	
blocks	before	adding	features	of	different	scales,	as	shown	in	
Figure	2(c).	ECA-Net	is	composed	of	adaptive	average	pooling	
(A-AvgPool)	layer,	1D	convolutional	(1D-CNN)	layer,	and	sig-
moid	function,	as	shown	in	Figure	2(d).		

A-Avgpool	is	applied	along	the	channel	axis	and	1D-CNN	cal-
culate	the	attention	of	each	channel.	The	kernel	size	of	1D-CNN	
is	defined	by		

	
where	k	and	C	denote	kernel	size	and	channel	dimension,	γ	
and	b are	set	to	2.	Clearly,	high-dimensional	channels	have	
longer	range	interaction,	vice	versa.	

2.1.4.	Pooling	Function	 

[9]	compared	five	different	 types	of	pooling	 functions	 in	the	
multiple	instance	learning	(MIL)	framework	for	SED,	namely	
attention	 pooling,	max	 pooling,	 average	 pooling,	 linear	 soft-
max,	and	exponential	softmax.	The	attention	pooling	estimates	
the	weights	for	each	frame	are	learned	with	a	dense	layer	in	
the	network.	The	max	pooling	simply	takes	the	large	probabil-
ity	in	all	frames.	The	average	pooling	assigns	an	equal	weight	
for	all	frames.	The	linear	softmax	assigns	weights	equal	to	the	
frame-level	probability,	while	the	exponential	softmax	assigns	
a	weight	of	exponential	to	the	frame-level	probability.	We	use	
attention	pooling	to	transform	frame-level	into	clip-level.	 

2.2.	Semi-Supervised	Learning	 

In	this	work,	we	employ	the	mean-teacher	framework	[10]	for	
semi-supervised	learning	and	use	the	Mean	Square	Error	(MSE)	
loss	for	the	consistency	cost.	The	MSE	loss	function	is	defined	
by	 

	

where	y	and	yˆ	denote	the	target	and	the	prediction,	respec-
tively.	Following,	we	propose	multiple	consistency	criteria	to	
regularize/direct	how	the	SED	system	should	learn	from	unla-
beled	or	weakly-labeled	data.		
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2.2.1.	Interpolation	Consistency	Training	 

Recently,	the	interpolation	consistency	training	(ICT)	[3]	has	
been	proposed	for	semi-supervised	learning.	ICT	encourages	
the	prediction	at	an	interpolation	of	unlabeled	data	points	to	
be	consistent	with	the	interpolation	of	the	prediction	at	these	
data	points.	Learning	from	interpolation	samples	can	help	the	
model	discriminate	ambiguous	samples	to	improve	the	gener-
alization	ability.	We	define	the	ICT	loss	function	by		

 

where	Sθ	and	Tθ′	denote	a	student	model	and	a	teacher	model,	
di		and	dj	denote	data	points,	and	λ	is	randomly	sampled	from	a	
Beta	distribution.	 

2.2.2.	Shift	Consistency	Training	 

Inspired	by	ICT,	we	consider	time-shift	as	another	way	to	en-
hance	consistency.	It	is	called	shift	consistency	training	(SCT),	
which	is	similar	to	the	method	proposed	by	[4].	We	define	the	
SCT	loss	function	by	 

 

SCT	encourages	 the	prediction	of	 time-shift	 input	 to	be	con-
sistent	 with	 time-shift	 prediction.	 In	 theory,	 it	 allows	 the	
model	 to	 learn	 shift-invariance	 and	 temporal	 localization	 of	
sound	events.	 

2.2.3.	Clip-level	Consistency	Training	 

In	addition	to	ICT	and	SCT,	we	also	implement	clip-level	con-
sistency	training	(CCT)	[5].	We	define	the	CCT	loss	function	by	 

 

where	NN	(dx)	 is	 the	weighted	average	pooling	of	 the	CRNN	
frame-level	network	output	of	data	dx,	and	Clip	Level(fx)	is	ob-
tained	by	feeding	the	feature	map	fx	of	the	final	CNN	block	to	a	
clip-level	classifier.	As	shown	in	Figure,	the	clip-level	classifier	
consists	 of	 3	 extra	multiscale	 CNN	 blocks,	 a	 global	 average	
pooling,	and	a	fully	connected	layer.	 

2.2.4.	Overall	Consistency	Training	 

In	summary,	the	overall	loss	is	

	 

where	L0	denotes	the	loss	without	the	proposed	consistency.	 

2.3.	Data	Augmentation		

• Mixup	[7].	It	mixes	two	randomly	selected	samples	from	
the	original	training	data	and	uses	λ	sampled	from	Beta	
distribution	 to	 control	 the	 strength	 of	 interpolation	

between	 two	 samples.	 The	 linear	 interpolation	 tech-
nique	can	enhance	the	data	diversity	and	robustness	of	
the	network.		

• Shift	[11].	It	shifts	a	feature	sequence	on	the	time	axis,	
and	overrun	frames	are	concatenated	with	the	opposite	
side	of	the	sequence.	The	usage	helps	the	network	learn	
temporal	localization	information	of	the	sound	event.		

• Filter	Augmentation	 [8].	 It	 randomly	 increases	 or	 de-
creases	dB	of	frequency	bands	on	log	mel-spectrograms.	
The	improved	version	of	frequency	masking	helps	the	
model	to	extract	information	from	wider	frequency	re-
gions.	

2.4.	Adaptive	Post-Processing	 

The	frame-level	network	output	is	further	post-processed	to	
become	 the	 final	 output.	 First,	 thresholding	 operation	 con-
verts	probabilistic	outputs	to	binary	outputs.	Then,	the	binary	
output	 sequences	are	 further	smoothed	by	median	 filters	 to	
avoid	spurious	detection.	As	sound	classes	may	have	varying	
temporal	 characteristics,	we	 untie	median	 filter	 sizes	 in	 the	
post-processing	of	the	different	sound	classes.	Following	[12],	
we	search	the	median	filter	size	from	1	to	51	in	increments	of	
1	with	data	from	DCASE	2022	Task	4.	 

3. EXPERIMENTS 

3.1.	Dataset	and	Signal	Preprocessing	 

The	DESED	dataset	of	DCASE	2022	Task	4	is	comprised	of	10-	
sec	audio	clips	and	10	classes	of	sound	events.	The	data	are	in	
two	domains:	real	data	(44.1kHz)	extracted	from	Audio	Set	[13]	
and	synthetic	data	(16kHz)	generated	by	Scaper	[14].	Each	au-
dio	clip	can	be	strongly	labeled	with	the	sound	events	and	their	
time	 boundaries	 annotated,	 weakly	 labeled	 with	 only	 the	
sound	events	annotated,	or	unlabeled	without	any	annotation.	
All	 dataset	 is	 divided	 into	 4	 subsets:	weakly	 labeled	 (1,578	
clips),	unlabeled	(14,412	clips),	strongly	labeled	(10,000	clips),	
and	validation	set	(1,168	clips).	Audio	signals	are	resampled	
to	16kHz	sampling	rate	at	first	by	librosa	tool	[15].	From	the	
resampled	signals,	128-channel	mel-spectrogram	is	extracted	
with	window	size	of	2048	and	hop	size	of	256.	The	mel-spec-
trogram	of	a	clip	is	normalized	to	zero	mean	and	unit	variance.	
Consequently,	 the	 size	 of	 the	 input	 acoustic	 features	 to	 the	
deep	neural	network	is	626	×	128.	 

3.2.	Network	Setting	 

The	7	layers	of	multiscale	CNN	blocks	have	the	number	of	fil-
ters:	[16,	32,	64,	128,	128,	128,	128]	and	pooling	size:	[[2,	2],	
[2,	2],	[1,	2],	[1,	2],	[1,	2],	[1,	2],	[1,	2]].		For	ICT	and	mixup	aug-
mentation,	the	parameter	λ	is	sampled	from	Beta	(α,	α)	and	α	
from	0.1	to	0.7	in	increments	of	0.1.	For	SCT	and	shift	augmen-
tation,	we	choose	the	amount	of	time-shift	by	sampling	from	a	
normal	distribution	with	a	zero	mean	and	a	standard	deviation	
of	 90.	 For	 filter	 augmentation,	 dB	 range	 and	 band	 number	
range	are	set	to	(-9,	9)	and	(2,	5)	respectively.		
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4. RESULTS 

We	submit	two	systems.	The	main	difference	between	them	is	
that	system	1	implements	pre-ECA	in	CRNN	network	whereas	
system	2	does	not	contain	this	part.		In	addition,	system	1	ap-
plies	 mixup	 and	 filter	 augmentation	 for	 data	 augmentation	
while	system	2	uses	mixup	and	shift	method.	

The	performance	of	each	system	is	measured	in	terms	of	PSDS	
1,	 PSDS	 2,	 and	 macro-averaged	 event-based	 F1	 score	
(F1_event).	Table	1	shows	the	scores	on	the	validation	set	of	
each	system.	Compared	to	the	baseline,	system	1	and	system	2	
are	both	 improved.	System1/system	2	 increases	3.3%/1.6%	
and	10.2%/6.5%	in	PSDS	1	and	PSDS	2	respectively.	As	for	the	
F1	score,	we	can	get	higher	score	of	45.6%	in	system	1.	

Table	1:	system	performance	on	the	validation	set.	

system	 PSDS	1	 PSDS	2	 F1_event	

system	1	 0.362		 0.634		 0.456		

system	2	 0.345	 0.597	 0.435	

2022	baseline	 0.329		 0.532		 0.403		
	

5. CONCLUSION 

In	this	technical	report,	the	proposed	system	is	based	on	the	
neural	 network	 of	 CRNN,	 which	 is	 trained	 with	 the	 mean-
teacher	framework	of	semi-supervised	learning	using	multiple	
consistency	 criteria.	 Among	 them,	 interpolation	 consistency	
training	 (ICT)	 helps	 the	 model	 discriminate	 the	 ambiguous	
samples	 to	 enhance	 the	 generalization	 ability,	 shift	 con-
sistency	training	(SCT)	assists	the	model	to	learn	better	tem-
poral	 information,	 clip-level	 consistency	 training	 (CCT)	pro-
motes	the	model	feature	representation	power.	In	additional,	
a	multiscale	CNN	block	is	applied	to	extract	richer	features	to	
alleviate	the	influence	of	the	diversity	of	event	length	for	the	
model.	An	efficient	channel	attention	network	(ECA-Net)	and	
attention	pooling	assist	model	to	obtain	more	definite	sound	
event	predictions.	We	employ	the	mixup,	shift,	and	filter	aug-
mentation	as	data	augmentation	to	further	improve	the	model	
performance.	Finally,	our	best	sound	event	detection	system	
achieves	the	PSDS-scenario	1	of	36.2%	and	PSDS-scenario	2	of	
63.4%	on	the	validation	set,	considerably	outperforming	that	
of	the	baseline	score	of	32.93%	and	53.22%,	respectively.		
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