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ABSTRACT 

This technical report describes the system submitted to DCASE 

2022 Task 3: Sound Event Localization and Detection (SELD) 

Evaluated in Real Spatial Sound Scenes.  The goal of Task 3 is to 

detect the occurrence of sound events belonging to a specific tar-

get class in a real spatial sound scene, track temporal activity, and 

estimate the direction or location of arrival.  In a given dataset, 

synthetic and real data exist together, and only a very small 

amount of real data exists compared with synthetic data. In this 

study, we developed a method utilizing a multi-generator and an-

other applying SpecAugment as a data augmentation method to 

address the problem of imbalance in the amount of data. In addi-

tion, in our network architecture, the Transformer encoder was 

applied to the Convolutional Recurrent Neural Network (CRNN) 

structure that is mainly used in SELD. In addition, as a result of 

training with a single model and applying an ensemble, it was 

confirmed that the performance improved compared to the base-

line system. 

Index Terms— sound event localization and detection, 

CRNN, deep learning, Transformer, model ensemble 

1. INTRODUCTION 

Sound event localization and detection (SELD) involves identi-

fying a sound class and estimating the onset, offset, and direction 

of arrival (DOA) of the corresponding sound event. In DCASE, 

several solutions have been proposed based on SELD (polyphonic 

SELD using only fixed sound sources, the introduction of moving 

sound sources, and the introduction of unknown directional inter-

ferences) in various environments [1, 2, 3, 4]. In 2022, the SELD 

task was performed using real spatial sound scenes. Because 

SELD is performed in real space sound scenes, a small amount of 

real data recorded in the real space and several synth data for train-

ing are provided [5]. 

Fundamental problems must be addressed to complete the SELD 

task, including sound event detection (SED) [6, 7] and sound 

source localization (SSL) [8, 9].  In this study, to solve this prob-

lem, we proceeded based on the SELDNet model proposed in [10, 

11]. In particular, in the aforementioned study, a convolutional re-

current neural network (CRNN) was proposed for the SELD of 

multiple overlapping sound events in the three-dimensional space. 

The experiment was conducted in the first-order Ambisonic (FOA) 

format and multichannel log-mel spectrograms, and intensity vec-

tors were used as the input features. 

 In addition, a Transformer encoder was used to train temporal 

context information.  The output of the Transformer encoder is fed 

to a fully connected block.  Multi-Activity Combined Cartesian 

Direction of Arrival (Multi-ACCDOA) in the output format [10]. 

Finally, to maximize the performance of the system, several SELD 

models trained with slightly different structures and conditions 

were combined into an ensemble. 

The remainder of this paper is organized as follows. In Section 2, 

the proposed method is introduced. A comparison of the results 

obtained using the experimental setup and development data is de-

scribed in Section 3. Finally, Section 4 closes the paper.  

2. PROPOSED METHOD 

2.1. Data generation 

The dataset provided by DCASE consists of 1200 synthetic da-

tasets and spatial recordings of real scenes with 121 spatiotemporal 

annotations [5]. The amount of training data was increased to im-

prove the performance of the model. Using the provided external 

data and spatial room impulse response (SRIR), 5100 synthetic 

data were used for training. Synthetic data are FOA format data 

consisting of 13 classes ('Female Speech', 'Male Speech', 'Clap-

ping', 'Telephone', 'Laughter', 'Domestic Sounds', 'Footsteps', 

'Door Cupboard', 'Music', 'Music Instrument', 'Water Tap’, 'Bell', 

'Knock'). As hyperparameters for data generation, the number of 

maximum polyphony was set to 2, the duration was set to 60 s, and 

the sampling rate was set to 44.1 kHz. In addition, the signal-to-

noise ratio (SNR) was set to have a value of 6 to 31 at random, the 

speed of the event was set to have values of 10.0, 20.0, and 40.0, 

and there was no directional interference. 'Female Speech', 'Male 

Speech', 'Clapping', 'Telephone', 'Laughter', and 'Domestic Sounds' 

were set to random values as to whether the source event was dy-

namic, 'Footsteps' was set to be dynamic. The other classes were 

set as static 

2.2. Input feature extraction 

We used the same approach as the baseline to obtain the features 

[5]. The FOA format was used in this study because it performed 

better at the baseline than the MIC format. Seven channels are pre-

sent in first-order Ambisonic (FOA) audio files: four log-mel 
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spectrograms and three intensity vectors. The same settings as the 

baseline (64 mel bands, 40 ms window and 20 ms hop length at 

24kHz) were used to extract the features. We followed the same 

approach for normalization. 

2.3. Network architecture 

The model was created based on the baseline CRNN structure, 

and multi-ACCDOA was applied to predict the SED and DOA in 

a single branch [10]. To improve the performance of the model, 

various attempts have been made to change RNN layer to Bi-GRU 

[12] or Bi-LSTM [13]. The model was modified after several at-

tempts. Figure 1 shows the overall structure of the proposed model. 

If each batch receives data at a certain rate using a multi-generator, 

the shape of the input data was set to (128, 250, 64, 7). (128, 250, 

64, 7) represent (b, t, fq, ch), respectively. When the input data 

arrives, it first passes through the stem CNN layer and changes 

according to the input shape of the Residual Block [14]. It then 

passes through the Residual Block on the 3rd floor; the residual 

block passes through the 2nd convolutional layer, and finally, the 

Pooling layer, following which Dropout is applied. Subsequently, 

the input data passes through the FC layer through the Transformer 

encoder [15] and Hyper tangent is applied as an activation function 

to generate a Multi-ACCDOA- type output [10]. 

 

2.4. Training method 

The training dataset consists of 121 real scene recorded datasets 

(real data) provided by DCASE, 1200 synthetic datasets (synth 

data1), and synthetic datasets (synth data2). At this time, an im-

balance in the amount of real data and synth data 1 and 2 appears. 

To address this problem, this study used a multi-generator to set 

the ratio of data for each batch, and training was carried out in-

cluding real data for every batch. 

The amount of training data was increased by synthesizing data, 

and real data were used for each batch, however, the data augmen-

tation method must be applied because the data are still limited. 

SpecAugment [16], an augmentation technique widely used in 

speech recognition, was used as a data augmentation technique, in 

which two types of masking were used: frequency masking and 

time masking. Masking was applied to all the channels of the train-

ing data (real data, synth data1, synth data2). 

 In addition, training was performed by setting various training 

parameters. As the optimizer, we changed the performance from 

Adam [17] to Nesterov Momentum Adam (NAdam) [18] and com-

pared the performance trends. The dropout value was set to 0.2, 

the learning rates set to 20−3 and10−3, and the results were com-

pared. In addition, after training by reducing the learning rate at 

regular epochs up to 30 epochs using the scheduler, a method of 

changing the learning rate according to the period of the cosine 

periodic function was used. Figure 2 show the change in the learn-

ing rate after 30 epochs. The cycle was repeated every 10 epochs, 

with the largest learning rate value at the 4th epoch of the cycle, 

which then slowly decreases to 10−4. 

Table 1: Test results for a single model: using a develop-

ment dataset 

Model ER F LE LR SELD 

model 1 0.67 0.33 24.63 00.61 0.47 

model 2 0.69 0.30 24.03 0.58 0.48 

model 3 0.65 0.31 24.81 0.59 0.47 

model 4 0.66 0.30 25.72 0.62 0.47 

model 5 0.65 0.31 22.24 0.53 0.48 

model 6 0.65 0.30 30.01 0.59 0.49 

model 7 0.65 0.31 26.41 0.62 0.47 

 

3. EXPERIMENTS 

Several models were trained using two types of models, and the 

ensemble [19] was applied by selecting some models. The differ-

ence between the two models is whether the RNN layer is a Bi-

LSTM or  Transformer. Table 1 presents the results for each model. 

Several models were trained using two types of models, and then 

ensemble training was applied by selecting a few values. The dif-

ference between the two models lies in whether the RNN layer is 

Figure 1: Overall architecture of the proposed network 

Figure 2: After 30 epochs variation of the learning rate 

per epoch 
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a Bi-LSTM or Transformer. After training, seven single and four 

ensemble models were selected. The results of each model are 

listed in Table 1, and the ensemble results are listed in Table 2.  

Table 2: Test results for an ensemble model: using a de-

velopment dataset 

Model ER F LE LR SELD 
1+2+3+4+5+6+7 0.59 0.35 20.68 0.57 0.45 
1    +3+4+5+6+7 0.59 0.34 24.75 0.58 0.45 
1+2    +4+5+6+7 0.59 0.35 33.75 0.57 0.46 
1+2+3+4    +6+7 0.59 0.34 23.00 0.59 0.44 

 

4. CONCLUSION 

In this technical report, polyphonic sound event localization and 

detection method using convolutional neural networks and self-at-

tention was proposed, and the performance of this method was 

evaluated in real spatial sound scenes. For training such network, 

the real and synthetic data were employed. Because the imbalance 

between synthetic and real data was very severe, we utilized a 

multi-generator for synthetic and real data. In addition, the pro-

posed model using a residual block and transformer encoder was 

employed. As a result of applying an ensemble, an improvement 

in performance was confirmed as compared to the baseline model. 
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