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ABSTRACT

This technical report presents our proposed algorithms for the
task 2 of the DCASE2022 challenge, which is unsupervised anoma-
lous sound detection for machine condition monitoring by applying
domain generalization techniques. We suggest two methods for fea-
ture extraction. The first method is based on extracting features
using the latent space of an Autoencoder, and the second method
is based on using the Mel-frequency cepstral coefficients (MFCC)
to represent the signal. We represent the features using symmetric
positive-definite (SPD) matrices. As there maybe a domain shift
between the train data and the test data, we first performed spectral
clustering given the Riemannian distances between the SPD matri-
ces. A one class SVM is then trained on each of the centers of the
clusters and is used to detect the anomalies in the data.

Index Terms— Unsupervised Anomaly Detection, Autoen-
coder feature extraction, Spectral feature extraction, Machine Con-
dition Monitoring, Riemannian geometry, One-class SVM.

1. INTRODUCTION

In this technical report we consider task 2 of the DCASE 2022
challenge which is about unsupervised anomalous sound detection
for machine condition monitoring applying domain generalization
techniques.

Anomalous detection in audio signals is an important task in
several applications. Many factories and craftsman are operating
machinery on daily basis. When a fault occurs, the sound that the
machinery emit might change. This attribute can be processed and
exploited to report the fault. The costs of such acoustic anomalous
detection is very low, and does not necessarily require heavy or ex-
pensive equipment. The main challenge in this task is the fact that
most of the machinery anomalous behavior have not been recorded,
which makes this task unsupervised - detection of an anomaly, when
no anomalies are in the training data-set. Moreover, most of the ma-
chinery can operate in several modes.

In this task we approached a problem in which there where
many recordings of one operating mode (source domain) and a
small amount of another (target domain) in the training set, whereas
at the test set, the probability that a fault occurs is equal between
the domains. So, a data-based solution must lean on the major do-
main, but also be able to give good results on the smaller domain
data. This challenge is called domain-shift and it suggests that the
attributes to solve one problem can be shifted to solve the other.

We consider two types of feature extraction. The first is based
on Autoencoders (AE) which are commonly used in deep learn-

ing methods. AE’s are able to learn the latent features need to ob-
tain a reliable reconstruction of the data. The second is based on
Mel-scale frequency cepstral coefficients, which are usually used in
as features to represent an audio signal, especially in audio signals
containing poor spectral information.

The domain-shift problem lead us to tackle it while combining
classical methods in our approach which can be easily transformed
between domains, without many data samples needed. The next
step was processing the features using Riemannian geometry, as de-
scribed in [1]. Lastly we detect anomalies on the processed features
using one-class support vector machine (OC-SVM) as suggested
by [4].

In this report we will describe our methods in details in section
2. We will present the results on the development data-set in section
3, and our conclusion will be in section 4.

2. PROPOSED APPROACHES

Our approaches are composed from three parts: feature extracting,
feature processing, and anomaly detection.

2.1. Feature extraction

We used two different methods for feature extraction: the latent
layer of an AE, and cepstral coefficients.

Extracting AE features is performed by training a simple fully
connected AE. The AE is trained to minimize the Itakura-Saito
spectral distance [2] between five, concatenated in the time domain
log-Mel-Spectrum, frames. The AE latent space is one z € R'*3
vector for five concatenated frames, and overall, we result in N X 8
matrix output for N segments of five frames in a recording. The
Autoencoder architecture is as described in table 1. Also, the AE
training hyper-parameters are as described in table 2.

We used the Itakura-Saito spectral distance [2] as loss function
between the input log-Mel-Spectrum to the AE output. The distance

is defined as
P oo ([E@Y) 4 aw
P( ) log (P( ) 1d )

ISioss = /
—x P(w w)

Where P represents the input spectrum, P represents the recon-
structed spectrum, and w denotes the angular frequency.

The cepstral coefficients are extracted as follows. The data is
recorded with sampling frequency fs = 16[kHz], and it was split
into overlapping segments using window with length of 0.03 - fs,
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Layer name Output Shape  Parameters
input 1 [(None, 640)] O
dense 0 (None, 128) 82048
batch normalization 0 (None, 128) 512
activation 0 (None, 128) 0
dense 1 (None, 128) 16512
batch normalization 1 ~ (None, 128) 512
activation 1 (None, 128) 0
dense 2 (None, 128) 16512
batch normalization 2 (None, 128) 512
activation 2 (None, 128) 0
dense 3 (None, 128) 16512
batch normalization 3 (None, 128) 512
activation 3 (None, 128) 0
dense 4 (None, 8) 1032
batch normalization 4  (None, 8) 32
activation 4 (None, 8) 0
dense 5 (None, 128) 1152
batch normalization 5  (None, 128) 512
activation 5 (None, 128) 0
dense 6 (None, 128) 16512
batch normalization 6  (None, 128) 512
activation 6 (None, 128) 0
dense 7 (None, 128) 16512
batch normalization 7  (None, 128) 512
activation 7 (None, 128) 0
dense 8 (Dense) (None, 128) 16512
batch normalization 8  (None, 128) 512
activation 8 (None, 128) 0
dense 9 (None, 640) 82560
Table 1: AE architecture details
parameter name value
batch size 512
max epochs 50
learning rate 0.001
early stop true

patience (early stop) 5

Table 2: AE training hyper-parameters
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and overlap length of 0.02- f;. The number of coefficients extracted
from the mel filter bank is 40.

2.2. Feature processing
We utilized a Riemannian distance measure, which is defined by

1

_1 _
dr(C1,Ca) = [[logm(Cy 2C1Cy 2| ()

where logm is the matrix logarithm operator, and C', C> are sym-
metric and positive definite matrices (SPD). We transformed our
input features to SPD matrices by eq. (3), to form an SPD matrix.
Let z; be the latent vector of the AE (deep method), or the MFC
coefficients (classical method) associated with the ¢th segment. Let
Z = [z1,22,...,2z~]| where N is the number of signal segments.
We then define the SPD matrix as

_ Ly
C=2'Z 3)

We calculate the Riemannian mean, C, of all the SPD matrices in
the training data. This mean is a matrix that minimizes the Rieman-
nian distance from all samples matrices space C; € Csampies and
is given by solving the following optimization problem,

C = argmin ZdR(C', i) 4
C

Ci

We then compute the Riemannian distance matrix between each of
the SPD matrices to the mean matrix C' as

Si = log(C~2C;C ) )

The feature vector for sample ¢ will be: s; = wvec(S;), where
vec(S;) is the column stack vector representation of the upper tri-
angle of the symmetric matrix S;.

In order to adjust our model to the domain-shift problem, we
computed several Riemannian means. These means where com-
puted on clusters of feature matrices that where constructed by spec-
tral clustering [3]. The affinity metric is defined by the Riemannian
distances. Then, each sample matrix S; is calculated using (5), and
its nearest cluster mean is obtained using (4).

2.3. Anomaly detection

An anomaly score is assigned to each data sample using a one-class
SVM model with a RBF kernel. The resulting support vectors sep-
arate the data from the origin in the high-dimensional kernel space.
Once the SVM is trained, the anomaly score of a new incoming data
point (an SPD matrix) Cj is defined as the distance of its respective
feature s; from the trained separating hyperplane.

3. RESULTS

The development data-set results are described in Table 3 (using the
AE features), and in Table 4 (using the MFCC features). The system
based on AE feature extraction is assigned in submission 1, and the
one based on MFCC feature extraction is assigned in submission 2.
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machine  section AUC(source) AUC(target) pAUC
00 0.6229 0.4949 0.5075
bearing 01 0.7376 0.5273 0.5386
02 0.5426 0.5906 0.5678
00 0.5352 0.3785 0.4997
fan 01 0.6660 0.4764 0.5000
02 0.8986 0.4945 0.4997
00 0.6720 0.5952 0.5710
gearbox 01 0.7270 0.6474 0.5426
02 0.7744 0.5908 0.5668
00 0.9460 0.7550 0.6689
slider 01 0.8642 0.8004 0.5931
02 0.8380 0.6928 0.6436
00 0.7528 0.3534 0.5026
ToyCar 01 0.7048 0.5434 0.5084
02 0.9846 0.6822 0.6589
00 0.7122 0.2518 0.5000
ToyTrain 01 0.8474 0.3152 0.5015
02 0.8486 0.4260 0.4878
00 0.5116 0.4934 0.5126
valve 01 0.5354 0.5392 0.5042
02 0.6198 0.5788 0.4978
Table 3: development dataset results using AE
machine  section AUC(source) AUC(target) pAUC
00 0.5497 0.7430 0.5148
bearing 01 0.5184 0.7573 0.5071
02 0.4759 0.5672 0.5077
00 0.6418 0.7102 0.5831
fan 01 0.6898 0.4116 0.5200
02 0.8782 0.5596 0.5531
00 0.8180 0.6972 0.6010
gearbox 01 0.6874 0.5886 0.5237
02 0.7462 0.6674 0.5889
00 0.9264 0.7464 0.6084
slider 01 0.8524 0.7644 0.5578
02 0.8268 0.7387 0.5995
00 0.8940 0.5756 0.5142
ToyCar 01 0.8108 0.6462 0.5142
02 0.9942 0.7960 0.6479
00 0.7148 0.2710 0.4942
ToyTrain 01 0.8408 0.2930 0.5000
02 0.8570 0.4424 0.5026
00 0.5544 0.5248 0.5078
valve 01 0.5658 0.5676 0.5100
02 0.5500 0.5072 0.4926

Table 4: development dataset results using MFCC
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4. CONCLUSION

We presented an approach to detect anomalies in machinery record-
ings using Riemannian feature processing based on features ex-
tracted from training an AE, and based on the classical MFCC fea-
tures. Further research may focus on determining the number of
clusters in the spectral clustering step, as the affinity matrix that
construct it is not sparse.
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