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ABSTRACT

This report describes the AITHU system for the DCASE 2022 Chal-
lenge Task 2, which aims to detect anomalous machine status via
sounding by using machine learning methods, where the training
dataset itself does not contain any examples of anomalies. We build
six subsystems, including three self-supervised classification meth-
ods, two probabilistic methods and one generative adversarial net-
work (GAN) based method. Our final submission are four ensem-
ble systems, which are different combinations of the six subsys-
tems. The best official score of the ensemble systems can achieve
86.81% on the development dataset, whereas the corresponding
Autoencoder-based baseline and the MobileNetV2-based baseline
are with scores of 52.61% and 56.01%, respectively.

Index Terms— DCASE, anomaly detection, domain general-
ization, machine condition monitoring, machine health monitoring

1. INTRODUCTION

The DCASE 2022 Challenge Task 2 is concerned with detecting
anomalous state of the target machine using the sounding data. Un-
like the acoustic scene classification, the available training data in
this task contains samples of only one class — the normal-state
class, but the aim is to detect whether a test sample is in another
class, refer to as anomaly class, which may include various anoma-
lous situations. A further complication added to this challenge is
that the distributions of the training data and of the test data are dif-
ferent. This is called as domain shift. In the literature, there are
some works investigating how to solve the domain shift problem by
using machine learning methods and reducing the performance gap
between the training and test data [1, 2]. Although these techniques
achieved impressive performance on image classification, they did
not generally gain the expected and comparable results in the ma-
chine status detection via sounding up to now.

In this technical report, we present six subsystems, the first
three are self-supervised classifiers trained by using the supervi-
sion information provided by the metadata, similar to the approach
taken by several teams at DCASE 2021 [3, 4] and DCASE 2020
[5]. The fourth and fifth models are probabilistic models. For the
fourth model, inspired by the probabilistic model in [3], we employ
normalizing flows to estimate the conditional density of the fea-
ture vectors for each section where the Mel spectrograms are used
as the input of the pooling layers. Those output above the defined

threshold will be marked as anomaly. The fifth model estimates the
conditional density of spectrogram target frames conditioned on re-
maining frames using an RNN based model and a GMM loss. The
sixth model is a GAN based model.

In Section 2, we present the results of the baseline systems, and
then in Section 3 we introduce our developed AITHU system in
detail and explain each subsystem composed of it. For each subsys-
tem, we will describe how it is trained and how to update its hyper-
parameters. After that, we present our detection results in Section 4.
Finally, the conclusions of our report are drawn in Section 5.

2. BASELINE RESULTS

In order to give a clear picture of the Challenge Task 2, we include
the baseline scores on Table 1 and Table 2. To present the results
succinctly, the results in all tables in this report present only the
harmonic mean of source AUC, target AUC and pAUC of section
0-2 for each machine type. Here the harmonic mean is denoted as
h-mean. The data used in this challenge is 16 kHz, single-channel
audio. For more details, please see [6, 7, 8].

Table 1: baseline-AE results
bearing fan gearbox slider ToyCar ToyTrain valve h-mean

54.80% 58.47% 63.07% 57.99% 51.06% 39.61% 50.59% 52.61%

Table 2: baseline-MobileNetV2 results
bearing fan gearbox slider ToyCar ToyTrain valve h-mean

59.16% 57.21% 59.91% 50.26% 54.23% 51.18% 62.42% 56.01%

3. APPROACHES

The general idea of the first three approaches is to first train a neural
network to extract the embeddings of the samples by classifying la-
bels extracted from the metadata, and then use the outlier detection
algorithm to score how abnormal the embeddings are. The input to
the first two models is a spectrogram with or without a Mel transfor-
mation, the difference between the first two models is that the first
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Figure 1: Overview of the classification based method.

model uses a single index loss detection, while the second model
uses a multiple indices loss detection. For the third model, the in-
puts are the embeddings extracted by the pre-trained wav2vec [9],
which is trained with a partial Audioset [10]. The loss function for
the first three models is ArcFace [11]. The fourth and fifth models
differ from the first three in that they are not trained using any meta-
data information, which makes them completely unsupervised. The
fourth model attempts to learn several distributions of some fea-
ture vector bins conditioned on the remaining bins. The fifth model
estimates the distribution of target frames for the spectrogram con-
ditioned on the remaining frames. The sixth model is a GAN based
model. After describing these six subsystems, we present four en-
sembles of these subsystems, which are our final submission.

3.1. Classification Based Methods

In this subsection, we describe the first three subsystems, which we
call SC (Section Classification), MHCR (Multi-head Classification
& Regression) and SC-wav2vec. All of the three subsystems follow
the overview shown in Figure 1.

The overview shown in Figure 1 is divided into three processes.
First, we use the training samples to train the embedding network,
and then use the trained embedding network to extract the embed-
dings of the training samples. Later on, we use these embeddings to
train the outlier detector. Finally, the trained embedding network is
used to extract the embeddings of the test samples, and the trained
outlier detector is used to score the abnormality of these embed-
dings. In Figure 1, the embedding is extracted from the output of
the last or penultimate layer of the embedding network. The clas-
sification head is usually an ArcFace [11] layer, and the regression
head is a fully connected layer.

3.1.1. Features & Training

The input feature of the embedding network used in the SC and
MHCR is STFT spectrogram with or without a Mel transformation.
For the SC-wav2vec, the input feature is the embedding extracted
from a pre-trained wav2vec [9], which is trained using a partial
AudioSet [10]. The logarithm is taken for the Mel spectrogram
but not taken for the STFT spectrogram. We choose the optimal
STFT frame length, hop-length, frame count, and decide whether
Mel transform for each machine type is used or not. The specific
feature parameters are shown in Table 3.

For the SC, the embedding network is trained to predict the
section IDs using ArcFace [11] loss function. Since only the sec-
tion ID metadata is used, there is only one classification head in the
SC. For the MHCR, we additionally use other tags in the filenames
to design classification (factory noise, microphone position, etc.) or
regression (speed, weight, etc.) tasks. In order to achieve multi-
label classification or regression, multiple parallel classification or
regression heads are used. Different tasks are trained simultane-
ously. The hyperparameter λ is used to balance multiple losses, as
shown in (1).

L =
∑
i

λiLi (1)

where λi > 0 and Li is the loss of label i. For the SC-wav2vec,
we first train wav2vec [9] model using Fairseq [12] on the balanced
AudioSet [10], while the features extracted using the pre-trained
wav2vec [9] are input to the embedding network. The supervised
label for the SC-wav2vec is the section IDs, hence, only one classi-
fication head is used in the SC-wav2vec.

Based on various experiments using the training dataset pro-
vided in section 0-2, we observe that the architecture of the em-
bedding network has a significant impact on the performance and
the optimal network architecture is different for different machine
types, so we select the best performing network from Mobile-
FaceNet (MFN) [13], MFNSE, Ecapa-tdnn [14] and Cnn6 for each
machine type. The MFNSE is an improved network from the MFN,
the difference between the MFNSE and MFN is that we add a
squeeze-excitation [15] block to the bone block of the MFN. The
Cnn6 is a 6-layer convolutional network used in [16].

For the training of embedding network, we adopt the AdamW
optimizer with the default learning rate of 1 × 10−3, weight decay
1× 10−4, and 25 epochs for training, where all the training data is
drawn from the development and evaluation datasets. When training
the wav2vec [9] model on the balanced AudioSet [10], we use the
initial learning rate of 1 × 10−7 and linearly increase the learning
rate to 5 × 10−3 in the first 500 updates, then decay to 1 × 10−6

along the cosine curve.

3.1.2. Anomaly Detection Algorithms

Because the training samples only contain the normal ones, outlier
detection algorithms are used to detect anomalous samples. After
training, the embedding network is used to extract the embeddings
of the input samples, and the embeddings of the training samples are
used to fit the outlier detector. For the outlier detection, we employ
four well known algorithms, k-NN [17], LOF [18], cosine distance
and Mahalanobis distance. For the cosine distance and Mahalanobis
distance, we compute the average embedding using the embeddings
of the training samples, and additionally compute the covariance
matrix for the Mahalanobis distance. In the test phase, the average
embedding and covariance matrix are used to compute the cosine
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and Mahalanobis distances of the test embedding, and use them to
present the anomaly scores.

3.1.3. Results

Table 3 shows the results of the SC, Table 4 shows the results of
the MHCR, while Table 5 shows the results of the SC-wav2vec.

Table 3: The results of SC
bearing fan gearbox slider ToyCar ToyTrain valve

feature STFT STFT STFT STFT logmel STFT STFT
nMels - - - - 64 - -
nffts 2048 2048 2048 2048 2048 2048 2048

nFrames 192 192 192 192 192 192 192
network MFN MFNSE MFN MFNSE Ecapa-tdnn Cnn6 MFNSE
h-mean 82.20% 80.64% 83.20% 88.27% 77.50% 75.92% 96.84%

Table 4: The results of MHCR
bearing fan gearbox slider ToyCar ToyTrain valve h-mean

72.07% 72.16% 84.01% 83.18% 71.10% 68.14% 95.28% 77.01%

3.2. Probabilistic Models

In this subsection, we describe the fourth and fifth subsystems,
which we call WSP-NFCDEE and IMDN (Interpolation Mixture
Density Network).

The WSP-NFCDEE is built on the NFCDEE proposed in [3].
The difference between the NFCDEE and the WSP-NFCDEE is
that we add a Weighted Statistic Pooling (WSP) layer before the
normalizing flows, which improves the performance on most ma-
chine types, especially on the slider. Hence, we call this method
WSP-NFCDEE. Let X ∈ RM×T is a Mel spectrogram, where M is
the number of Mel bins and T is the number of frames. The WSP
computes the mean and standard deviation of X along time axis to
obtain the mean vector y ∈ RM and the standard deviation vector
z ∈ RM . The output of the WSP is α · y + β · z, where the α and β
are two trainable parameters satisfying the constraints (2).

α+ β = 1, α, β > 0 (2)

For the IMDN, we adopt three network structures mainly based
on CNN and GRU, and a special density estimation loss function
that combines the IDNN structure and Gaussian mixture model.
We employ three networks name IGNN, LRCGNN, and a simpli-
fied DeepFilterNet [19]. Sufficient experiments had shown that net-
works based on RNN structure perform well on time series inputs.
Hence, we select the 3D input with this form, (batch size, nFrames,
nMels), which will be later propagated forward in the time dimen-
sion by the GRU, while CNN is mainly in the frequency dimen-
sion. We first select two lightweight network architectures, IGNN
and LRCGNN. These two networks are with relatively low com-
putation complexity, but achieve significant improvements over the
Autoencoder-based baseline. The architecture of IGNN is shown in
Table 6. The LRCGNN additionally add a Conv1d layer after the
first fully connected layer of IGNN.

Table 5: The results of SC-wav2vec
bearing fan gearbox slider ToyCar ToyTrain valve

Scoring maha maha k-NN k-NN LOF k-NN cosine
h-mean 58.54% 57.16% 58.01% 66.77% 71.90% 65.03% 68.89%

Table 6: The architecture of IGNN
layer name parameters

Fully Connected (nMels, 128)
3 × GRU (128, 128)

Fully Connected (128, 32)
Fully Connected (32, 128)

3 × GRU (128, 128)
Fully Connected ((nF-1)×128, 2×nC×nMels)

To achieve a better performance on more complex data, we em-
ploy DeepFilterNet (DFnet) [19], a more complex Unet-like net-
work proposed in speech enhancement. The computational com-
plexity of the original DeepFilterNet [19] is high, so we use two
fully connected layers in place of the original two convolutional
layers, which greatly reduces the amount of computation. Addi-
tionally, we add a fully connected layer to match the number of Mel
bins.

IDNN [20] was demonstrated to achieve significant improve-
ment on non-stationary signals, which predicted the center frame of
the input Mel spectrogram. We also adopt this idea. Another mod-
ification is that the Gaussian mixture model is adopted as the loss
function. Let xp is the p-th frame to be predicted. By mapping in-
put features X to the parameters of the GMM, we obtain the frame
predictions in probabilistic form (In the test system, the component
weights are selected the same value):

p (xp|X, D,E) =

C∑
m=1

pm (xp|X, D,E) (3)

where C is the number of Gaussian components and pm is the den-
sity of the m-th Gaussian component. Since the aim is to find the
maximum probability density of the predicted frame, the LSE func-
tion is as follows.

LLSE = −log

M∑
i=1

exp

(
C∑

m=1

log pm (xp|x, D,E)

)
(4)

where M is the number of Mel bins. When the covariance matrix
of GMM is taken as diagonal matrix, this loss function is proved to
be equivalent to maximization of the log likelihood of network with
the given data.

3.2.1. Features & Training

The input feature of the WSP-NFCDEE and the IMDN is STFT
spectrogram with Mel transformation and the logarithm is taken for
the Mel spectrogram. For different machine types we tune the val-
ues of nMels, nffts, nFrames.

3.2.2. Results

Table 7 shows the results of the WSP-NFCDEE, while Table 8
shows the results of the IMDN.
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Table 7: The results of WSP-NFCDEE
bearing fan gearbox slider ToyCar ToyTrain valve

nMels 128 128 64 64 64 64 64
nffts 2048 2048 2048 2048 2048 2048 1024

nFrames 100 60 100 100 100 100 30
network LRCGNN LRCGNN DFnet LRCGNN LRCGNN DFnet IGNN
h-mean 68.12% 68.54% 79.96% 78.52% 65.23% 60.29% 68.27%

Table 8: The results of IMDN
bearing fan gearbox slider ToyCar ToyTrain valve

nMels 128 128 64 64 64 64 64
nffts 2048 2048 2048 2048 2048 2048 1024

nFrames 100 60 100 100 100 100 30
network LRCGNN LRCGNN DFnet LRCGNN LRCGNN DFnet IGNN
h-mean 60.92% 62.24% 67.73% 73.17% 68.29% 65.07% 86.19%

3.3. AEGAN-AD

In this subsection, we describe the sixth subsystem, which we call
AEGAN-AD.

We design an autoencoder which reconstructs Mel spectro-
grams and complement it with a discriminator, resulting in a GAN
[21] model. Inspired by [22], we adopt a DCGAN[23]-like autoen-
coder, with the discriminator being our encoder and the generator
being our decoder. As deconvolution suffers from checker-board ef-
fect, yet this effect is somehow resulting from the periodicity of the
spectrogram, which makes reconstruction better than an “upsample-
conv” structure. BNs are substituted by LNs in order to promote
the detection in target domain. Since most samples in a batch are
from source domain, it is likely that the network is misled by the
biased statistics and only learns the distribution of source domain,
resulting in a poor performance for target domain. LN, which nor-
malizes each sample independently, can learn to transform spectro-
grams into domain-invariant features. As for ToyCar and gearbox,
we pass the latent variable through an adaptive LN which does dif-
ferent affine transformations for different sections. This observa-
tion indicates that it could help to transform reconstructed samples
to their respective styles as in [24] so that features of different sec-
tions can be better represented. Loss function is selected as MSE.
Anomaly detection is conducted not only in input space, but also
in latent space, which is done by sending the reconstructed samples
back to the encoder to obtain their latent representations. L1 norm,
L2 norm and cosine are utilized to measure the difference of each
spectrogram and the overall anomaly score is the mean/min/max of
them. We select the best performing metric among these metrics.

For gearbox and slider, a discriminator is introduced to promote
the reconstruction, while the autoencoder becomes the generator.
The discriminator has the similar architecture with the encoder. It
is trained to do a feature level discrimination on the reconstructed
samples as a complement for MSE loss. Loss function for the dis-
criminator is WGAN-GP [25] and loss function for the generator
is a combination of MSE and feature matching loss [26]. Both of
them are shown as (5) and (6), respectively.

LD =Ex̂∼Pg [D(x̂)]− Ex∼Pr [D(x)]+

λEx̃∼Px̃ [(∥∇x̃D(x̃)∥2 − 1)2]
(5)

LG = Ex∼Pr [∥x−G(x)∥22] + µ∥Ex∼Pr [f(x)]− Ex̂∼Pg [f(x̂)]∥
2
2

(6)
where Pr and Pg denote the real distribution and the reconstructed
distribution respectively. Px̃ is the linear combination of Pr and

Table 9: The results of AEGAN-AD
bearing fan gearbox slider ToyCar ToyTrain valve h-mean

75.78% 65.83% 71.50% 75.02% 79.16% 58.71% 52.52% 67.04%

Pg . f(x) is the output of the last convolution layer in D. This em-
bedding is also extracted during test time and it is compared with
average embedding using k-NN [17], LOF [18], cosine and Maha-
lanobis distances. We simply choose the best performing metric
from both G-based and D-based metrics.

All input for the model is 128×128 Mel spectrogram computed
with 2048-point FFT and 512 hop-length. Logarithm is taken first
and a MinMaxScaler then scales spectrograms to [-1, 1]. We use
an Adam optimizer with a learning rate of 2 × 10−4. The batch
size is set to 512. The model is trained on both development set and
evaluation set. The performance is shown in Table 9.

4. SUBMISSION RESULTS

In this subsection, we present the results of ensembles. For the
ensembles, we combine the six subsystems by first standardizing
the training data scores and then searching over a grid of convex
combinations, similar to [3].

The difference between submission-1 and submission-2 is that
for submission-1, we additionally train domain classifiers with
Cnn6 for sections with obvious domain differences to predict
whether the test samples belong to the source domain or the target
domain. The test scores for both domains are normalized respec-
tively. For the submission-3, we combine the top performing two or
three subsystems for each machine type. For the submission-4, we
only combine the SC and WSP-NFCDEE for each machine type.
Table 10 shows the results.

Table 10: The results of ensembles
method bearing fan gearbox slider ToyCar ToyTrain valve h-mean

submission-1 87.75% 84.98% 87.55% 89.35% 83.52% 78.81% 98.10% 86.81%
submission-2 87.72% 84.34% 87.55% 88.77% 83.48% 78.15% 98.06% 86.51%
submission-3 87.62% 84.73% 87.54% 89.33% 82.25% 77.94% 98.10% 86.40%
submission-4 82.76% 83.88% 84.09% 89.25% 78.81% 76.57% 97.02% 84.18%

5. CONCLUSION

We have outlined our submission to the DCASE 2022 Challenge
Task 2, which features a domain shift between the training and test
distributions. We also find it concerning that domain adaptation
methods that seem to do well for vision, may not work as well for
audio, which is consistent with that pointed out in [3].

In this challenge, we set up a AITHU system platform, where
four new unsupervised models namely WSP-NFCDEE, IGNN, LR-
CGNN and AEGAN-AD are integrated. The unsuperivsed training
is employed for all the four different integration models. It is ex-
pected that AITHU system will be a promising one since it clearly
matches the data sampling feature in real application scenarios in
Industry 4.0 for machine working status detection. Moreover, our
best official score of ensembles can achieve 86.81% on the devel-
opment dataset, which is higher 30.80% than the best baseline.
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