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ABSTRACT

In this technical report, we describe our submission system for
DCASE2022 TaskS5: few-shot bioacoustic event detection. We pro-
pose several methods to improve the representational ability of em-
bedding under limited positive samples. Including the segment-
level and frame-level embedding learning strategy, model adap-
tation technology and embedding-guided event filtering approach.
The event filtering task is independently trained on each test file to
improve the discrimination of embeddings between similar events.
The proposed system is evaluated on the official validation set, and
the best overall F-measure score is 74.4%.

Index Terms— DCASE, few-shot bioacoustic event detection,
embedding learning, model adaptation, event filtering

1. INTRODUCTION

Few-shot learning (FSL), expecially few-shot image classification
(FSIC) has received considerable attention [1]. The existing typi-
cal FSIC methods can be roughly divided into three categories, in-
cluding semi-supervised based [2], transductive based [3, 4] and
inductive based [5]. The few-shot bioacoustic event detection es-
sentially can be seen as a FSIC task, where lots of query sets for
each audio are retrievable. Thence, we develop several solutions
from the perspective of semi-supervised supervision. Based on
pretraining-finetuning process scheme, three mothods are proposed
in this work. First, the segment-level embedding learning stratery.
Second, the frame-level embedding learning method. And the third,
embedding-guided event filtering approch.

To get a “negative” category center (also called “negative” pro-
totype), the baseline system assumes that the density of positive
events is low, so the whole audio is selected as the negative set. In
addition, the “negative” prototypes are generated by random sam-
pling. However, we found this hypothesis has low reliability in
some conditions. For some audio with a large proportion of pos-
itive samples, some positive segments will be regarded as negative
samples due to the negative samples are randomly selected, which
will lead to poor test results. Therefore, an appropriate adjustment
is made in this work. We assume the time period in the middle of
five labeled supports and before the first labeled support have higher
reliability to be selected as negative samples.

Duration of suport segments varies from a few milliseconds to a
dozen seconds in the validation set. The 2022 baseline system pro-
vides an adaptive window length and adaptive window shift scheme.

Table 1: Adaptive window length and fixed window shift scheme.

X window length — window shift
X< 17 7 7
17 < X <100 X 4
100 < X < 200 X /12 4
200 < X <400 X /14 4
X > 400 X/8 4

However, when the window shift is set to half the window length,
the number of audio segments to be retrieved is much smaller, that
is, the discrimination resolution of long audio is too low. In our
segment-level methods of schemes 1 and 3, an adaptive window
length and fixed window shift (ALFS) is used. The setting method
is shown in Table 1, where X represents the mean of 5 positive
support durations, X = mean(dura(support)).

As shown in table 1, the shortest window length is set to 17
frames, which is 0.2 seconds. However, most of the audio segments
in the support set are only 0.02 to 0.05 seconds in PB class. And itis
difficult for the segment-level scheme to extract credible represen-
tative embedding. Thence, we propose the frame-level method, that
is our scheme 2. Retrieval resolution is enhanced by determining
whether target event exist in each frame.

2. FRAMEWORK OF DETECTION

Our detection process is roughly as shown in Figure 1. Accord-
ing to the positive label and the specific negative segments selec-
tion method, each audio in the test set is divided into positive seg-
ments, negative segments, and query sets. The PCEN features are
performed on the spectrograms of audio segments. Hereafter, the
above PCEN are input into embedding extraction network to obtain
the segment-level (or frame-level for frame-level method) embed-
ding representation. Then the prototype features are obtained by
taking embdding mean of “postive” and “negative”. The positive
and negative central embedding are spliced to form a 1024*2 fea-
ture vector, which is used as an initialization parameter of the soft-
max binary classifier, that is W € R?*?. Finally, the embedding of
query set is multiplied by W, and the prediction results is obtained
through a softmax function. Finally, the F1 results of our three sys-
tems are 74.4%, 68.2%, and 58.2%, respectively. Detail results are
shown in Table 2.
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Table 2: Detailed validation results including four classes.
System Precision(%) | Recall(%) | F1(%) | F1—- HB(%) | F1- ME(%) | F1- ML(%) | F1 - PB(%)
Baseline 36.3 24.9 29.5 / / / /
Frame-Level 71.5 71.5 74.4 71.0 90.0 90.5 53.7
Seg-Level 75.6 62.1 68.2 85.8 79.2 73.5 48.1
Event-Filter 66.5 51.8 58.2 76.7 64.2 72.9 424
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Figure 1: The system framework of few-shot bioacoustic event de-
tection.

Table 3: The network architecture of frame-level embedding model.

Block kernel_stride BN _Activate
CNN_Block1 conv,3 x 3, (1, 128) BN+ReLLU
CNN_Block2 | conv,3 x 3, (128, 128) BN+ReLU
CNN_Block3 | conv,3 x 3, (128, 128) BN+ReLU
CNN_Block4 | conv,3 x 3, (128, 128) BN+ReLU

FC fc(1024, 2) Softmax

3. FRAME-LEVEL EMBEDDING LEARNING

The training and testing framework of frame-level embedding learn-
ing system are respectively shown in Figure 2 and Figure 3.
Compared to the baseline segment-level system !, the frame-level
method can make use of the similar relations among the adjacent
frames. Due to the stable feature embedding can be extracted of
variable length audio, we found that the frame level framework can
obtain a better adaptive system during fine-tuning. In addition, a
two-step fine-tuning scheme is designed in the testing stage, which
can make use of train-test set and get better feature embedding.
The frame level system. The network structure is shown in
Figure 2, in detail, which consists of 4 CNN layers and 1 linear

Uhttps://github.com/c4dm/dcase-few-shot-
bioacoustic/tree/main/baselines/deep_learning

Figure 2: The framework of frame level model.

layer. Different from the baseline system, a larger channel num-
ber (128 channels) is used.Meanwhile, to get a prediction of each
frame feature, the maxpooling downsampling layer is removed. The
specific configuration is shown in Table 3. We preform Per-Channel
Energy Normalisation (PCEN) on the Mel spectrograms of 128 bins
[6], with the 1024 FFT samples and a hop of 256 samples. In the
training stage, we use simples CE loss rather than few-shot loss
functions. Since the 2022 training set cannot be converged during
training, we removed the WMW class and the left audios contain 19
kinds of animal calls, which is used as our training set.

Two-step adaptive strategy. As shown in Figure 3, there are
two-steps during fine-tuning. First, the 5-shot labeled support seg-
ments are selected as positive set, and the four segments between
two positive samples are selected as negative set. We use cross en-
tropy loss function to distinguish the two classes. In order to obtain
better feature representation, we combine training set and the pos-
itive samples to define a 20-classification task.The second-step, we
can get posterior probability of query set by the first-step model.
Through method of fixed threshold selection, we set a high thresh-
old to filter query results with high confidence into the positive set,
thereby increasing the number of positive examples for training.
Then repeat stepl and step2 until a set number of iterations. With
the frame-level embedding learning, we got a powerful result in the
development set as table 2, which F1-score is 74.4%.

4. SEGMENT-LEVEL EMBEDDING LEARNING

Our pre-training fine-tuning segment-level scheme is shown in Fig-
ure 4. The overall network consists of 4 ConvBlocks ProtoNet [7],
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Figure 3: The framework of semi-supervised learning.

an adaptive average pooling and a fully connected layer. Each Con-
vBlocks is made up of a conv2d, a Batch Normalization and a ReLU
activation layer. During training, the 128 dimensional PCEN fea-
tures are divided into 0.2 seconds (17 frames) per segment, and the
loss function is CE Loss.
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Figure 4: The framework of Adaptive-Length Segment-level model.

In Figure 4, the black arrows represent the training process,
and the gold arrows represent the testing or fine-tuning process.
When the training is completed, backbone parameters are fixed, the
FC(1024, 2) layer is initialized by the “postive” and “’negative” pro-
totype features. Fine-tuning process of FC(1024,2) sets the num-
ber of iterations to 5, uses the Adam optimizer with learning rate
equal to le-5. Different iterations or learning rates have different
performances on different validation audio, but we did not perform
targeted debugging on per validation category.

Since the adaptive window length and fixed window shift
scheme are used, conversion method from onset (offset) frame num-
ber to time needs to be modified appropriately. The onset times of
the retrieval results of the baseline system are calculated as Equa-
tion 1, and our revised calculation method is as shown in Equation
2. Where onset_f means the onset frame, hop means window shift
(hop=4 is this work), seg mean adaptive window length.
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Figure 5: The framework of event filtering model.

Table 4: The data configuration of event filter model.

Embedding Input Target
Positive Positive Positive
Positive Positive + Negative | Positive
Positive Positive + Query Positive
Positive Negative Zero

onset = (onset_f + 1) x const

of fset = (of fset_f + 1) x const @

onset = (| seg * 0.66] + (onset_f — 1)) * const )
of fset = (|seg x 0.66] + (of fset_f — 1)) = const @
const = hop * 256/22050 3)

5. EVENT FILTER AND MODEL ADAPTATION

Our event filter model is shown in Figure 5. The overall frame-
work is similar with VoiceFilter[8], which contains an embedding
extraction module and a separation module. The embedding ex-
traction module is the same as segment-level embedding learning
scheme. The separation module consists of CNN, BLSTM and FC
layers. For specific configuration parameters, please refer to the
literature[8]. Given the embedding input, the event filer model are
expected to extract postive samples from the input mixture data.
Tabel 4 lists the data configuration of event filter model training.
In the testing stage, the event filter task is independently trained on
each test file to improve the discrimination of embeddings between
similar events. As shown by the red dotted line in the Figure 5,
during the event filter training process, the embedding extraction
network will update the parameters synchronously. We treat this
process as model adaptive training on unseen classes. In the fi-
nal detection stage, the original and filtered data are fed into the
embedding network to generate embeddings. Embeddings are then
averaged. Subsequent processing is the same as above.
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