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ABSTRACT

This technical report outlines our solution to DCASE 2022 Chal-
lenge Task 2, Unsupervised Anomalous Sound Detection for
Machine Condition Monitoring Applying Domain Generalization
Techniques. The goal is to detect recordings that contain anoma-
lous machine sounds in the test set using only normal sound data
in the training set. Our approaches are based on an ensemble of a
self-supervised classifier model, an autoencoder, a binary classifica-
tion model that utilizes task irrelevant outliers as pseudo-anomalous
data and a distance metric based model.

Index Terms— DCASE, unsupervised anomalous sound de-
tection, domain generalization

1. INTRODUCTION

In DCASE challenge 2022 Task 2 “Unsupervised Anomalous Sound
Detection for Machine Condition Monitoring Applying Domain
Generalization Techniques” [1], it is required to detect anomalous
sounds of machines. In real-world conditions, it is often easier for
us to obtain the sound of the machine working normally, while the
anomalies are rare and highly diverse. Therefore, we need to use the
normal sounds in the training data to detect anomalous sounds in the
test data. Furthermore, the acoustic properties of training data and
test data are different, i.e. domain shift. In the DCASE2022 task,
a new requirement for domain generalization techniques is added,
that is, the anomalous sound detection (ASD) system required to be
developed does not need to detect domain shifts or adjust models to
detect anomalies, and the domain of each sample is not provided in
the test data.

Our submission includes an ensemble of four major approaches
for anomalous sound detection. First approach is to use a self-
supervised classifier to classify the machine’s section ID. Our sec-
ond approach is based on an autoencoder (AE) to detect anomalous
sounds, that is, the anomalous score is calculated as the reconstruc-
tion error of the observed sound. The third is a method based on
binary classification. Since there is no anomalous data in the train-
ing set, we first utilize task irrelevant outliers as pseudo-anomalous
data , and then train a binary classifier to classify normal and anoma-
lous sounds. The fourth method we use is based on distance metric.
Specifically, we first train a classifier (i.e., the first method) and an
autoencoder (i.e., the second method), and then extract embeddings

from them to compute distances to obtain anomaly scores, respec-
tively.

In the following, we describe each approach and our experimen-
tal results in detail. Each recording used in this challenge is a single-
channel and 10-second long audio, including seven machines: Toy-
Car, ToyTrain, fan, gearbox, bearing, slide rail and valve [2, 3].

2. PROPOSED APPROACH

2.1. Self-Supervised Classification

Since the section ID of the machine is known, we can detect anoma-
lous sounds by identifying the machine’s section ID. Anomalous
sound detection methods based on self-supervised classification
have been used before with good results [4, 5]. Moreover, in the
DCASE2020 and DCASE2021 challenges, many teams have used
this method and achieved satisfactory results [6, 7]. Therefore, we
adopt this method to detect anomalous sounds.

2.1.1. Audio Processing

We transformed all audio clip into spectrograms with or without a
Mel transformation, and the logarithm was taken for both the STFT
and the Mel spectrograms. At the same time, the paper [8] shows
that the information in the time domain has a complementary ef-
fect on the spectrogram. Therefore, based on the STgram struc-
ture [8], we first extracted the feature information based on the raw
wave, and then concatenated it to the spectrogram or mel spectro-
gram as the input of the classifier. In addition, in order to improve
the generalization of the model and the representation of the fea-
ture vector, we trained Self-Supervised Audio Spectrogram Trans-
former(SSAST) [9] based on the AudioSet [10], and then extracted
the feature vector to connect with the above features.

We found that characteristic parameters such as the number of
FFT points, window shift, etc. have a greater impact on the perfor-
mance, and we have explored a set of optimal parameters for each
machine through experiments, see Table 1 for details.

2.1.2. Classifier Architectures, Training and Results

Considering the complementarity between different model struc-
tures, we adopt a total of four model structures: TDNN-Xvector,
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ResNet34, Resnet-Conformer and FCNN (fully convolutional neu-
ral networks), which are all attached with a softmax layer. Cross-
entropy loss and batch hard Triplet loss were used. In addition, we
also used the attribute information contained in each audio to cal-
culate the auxiliary loss. The softmax classification score of the test
sample, measured at the output corresponding to its true machine
ID, was used to calculate the anomaly score as follows:

Aθ(X) = log
1− pθ
pθ

(1)

where X is the feature of each audio as input to the model, pθ is the
softmax output of the model for the correct section ID, and Aθ is
the anomaly score for each audio.

We used the AdamW optimizer, however, on bearing machines
we found that using SGD worked better. All training data from the
development and evaluation datasets were used for training. We
fused the results of the four model structures, and the results are
shown in Table 1.

Table 1: Self-Supervised Classification Scoring Results(%)

ToyCar ToyTrain bearing fan gearbox slider valve
Feature MEL MEL MEL MEL STFT STFT MEL

Num FFT 2048 1024 4096 8192 2048 4096 2048
Num Mels 128 64 64 128 N/A N/A 256
Hop length 256 256 512 512 256 512 512

h-mean AUC
(source) 67.95 78.05 78.59 96.57 89.13 96.73 90.19

h-mean AUC
(target) 68.88 53.12 77.61 79.53 73.65 86.60 89.50

h-mean pAUC 58.37 54.75 66.12 76.46 63.65 83.22 79.02

2.2. Autoencoder

The autoencoder (AE) is based on the reconstruction error to re-
alize the detection of anomalous sound. That is, the input feature
vector is first mapped to a hidden representation with a lower di-
mensional space by the encoder component, and then, the decoder
component attempts to reconstruct the inverse transformation from
the hidden representation to the original input signal. The difference
between the feature vector of the original input and the output vec-
tor of the autoencoder is the reconstruction error. First, we used the
normal samples in the training set to train the AE to minimize the
reconstruction error. In this way, for the test sample, if it is normal
sound, the AE can reproduce it well, but for the anomalous sound
that has not been seen during training, the reconstruction error will
be bigger. Therefore, the magnitude of the reconstruction error can
be used to detect anomalous sounds.

2.2.1. Training and Results

We used a convolutional AE structure similar to [11], and we trained
an AE separately for each section of data for each machine. The
input of the model was a 128-dimensional logmel spectrogram. To
train this model, Adam optimizer is used with the default learning
rate of 5 × 104 for 100 epochs, and the results are shown in Table
2.

Table 2: Autoencoder Scoring Results(%)

ToyCar ToyTrain bearing fan gearbox slider valve
h-mean AUC

(source) 86.98 79.55 59.19 76.29 79.25 91.15 61.65

h-mean AUC
(target) 60.80 34.03 69.75 40.28 68.21 62.26 55.61

h-mean pAUC 54.76 50.42 52.82 57.27 60.32 62.96 50.40

2.3. Binary Classification

Binary classification models are trained by true normal sounds and
pseudo abnormal sounds. The normal sounds of target section of
the machine is used as positive data, while the normal sounds of
other section and a part of normal data of other machine are used
as pseudo negative data to train the binary classification models.
In particular, we made the data cleaning of pseudo negative data
of ToyCar and Fan by removing the examples whose attributes are
completely consistent with the normal sounds. Log Mel-filterbank
(LMFB) features are employed as inputs of the system. To gener-
ate LMFB, the short-time Fourier transform (STFT) with 1024 FFT
points is applied, utilizing a window size of 1024 samples, a hop
length of 512 samples and a dimensional Mel basis of 128. Besides,
the feature is normalized before being sent to the network.

The network architectures used in binary classification are
the same as those used in self-supervised classification including
TDNN-Xvector, ResNet34, Resnet-Conformer and FCNN (fully
convolutional neural networks). Mixup, which randomly mixes data
batches with corresponding labels, is applied to enhance the gener-
alization ability of the model. In addition to Cross Entropy Loss,
Focal Loss is also utilized to balance the imbalance number of nor-
mal and abnormal samples. The batchsize of training is set as 32
and Adam optimizer is used to train the model with the learning
rate of 0.0001. Due to the significant variation during training of
binary classification model, we performed the posterior fusion on
the scores of the last 10 epochs. The results of binary classification
are shown in Table 3.

Table 3: Binary Classification Scoring Results(%)

ToyCar ToyTrain bearing fan gearbox slider valve
h-mean AUC

(source) 78.56 79.62 82.76 80.26 84.41 98.62 87.50

h-mean AUC
(target) 70.85 45.29 86.76 59.04 67.62 79.11 90.59

h-mean pAUC 64.69 52.10 66.31 65.54 62.65 68.43 84.36

2.4. Distance Metric

The basic idea of the distance metric-based anomalous sound detec-
tion method is that the feature vector extracted from the anomalous
sound will be quite different from the feature vector extracted from
the normal sound. Specifically, we extracted feature vectors from
classifiers and autoencoders trained in a self-supervised manner, re-
spectively. Since there are only normal sounds during training, the
distance between anomalous sounds in the test set and the normal
samples in the training set will be relatively large. On the contrary,
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the distance between the normal sounds in the test set and the nor-
mal samples in the training set will be relatively small.

For each sample in the test set, first, we calculated the cosine
distance between it and all samples in the training data that belong
to the same section ID as this sample, and sorted them from near to
far. Then, we tried two distance measures: 1) the closest distance;
2) the average of the top 5 closest distances. We used one of these
two distances to calculate the anomaly score for each machine. Ob-
viously, the anomaly samples in the test set are farther away from
the normal samples in the training set, so it has a higher anomaly
score. Table 4 and Table 5 show the results of using distance metric
based on self-supervised classifier and autoencoder.

Table 4: Distance Metric Scoring Results Based on Self-Supervised
Classification(%)

ToyCar ToyTrain bearing fan gearbox slider valve
Distance
metric Top1 Top1 Top1 Average of

the top 5 Top1 Average of
the top 5

Average of
the top 5

h-mean
score 56.60 54.50 66.00 80.90 77.50 87.40 79.40

Table 5: Distance Metric Scoring Results Based on Auto-
encoder(%)

ToyCar ToyTrain bearing fan gearbox slider valve
Distance
metric Top1 Top1 Average of

the top 5 Top1 Top1 Top1 Top1

h-mean
score 64.30 49.50 57.30 50.20 63.10 63.90 51.10

where “h-mean score” is the harmonic mean of h-mean AUC
(source), h-mean AUC (target) and h-mean pAUC for each machine.
“Top1” refers to taking the nearest cosine distance to the test sam-
ple, and “Average of the top 5” refers to taking the average of the
top 5 nearest cosine distances.

2.5. Ensemble

Obviously, the results of the above four anomalous sound detec-
tion methods are complementary, so we can ensemble them. We
combined these four models by searching a convex combining grid,
similar to [12]. We explored four different sets of weights as the
final four systems submitted, and Table 6 shows the results.

3. CONCLUSIONS

This paper presents an ensemble approach for anomalous sound
detection based on self-supervised classification, autoencoder, bi-
nary classification and distance metric. Experimental results show
that by integrating our different methods, we can achieve better re-
sults than the baseline. We believe this is because each method
focuses on different features to detect anomalous sounds, and they
have strong complementarity, so it is important to integrate models
that focus on different features. Future work includes developing
more “internal modeling” (IM) based [13] anomalous sound detec-
tion methods and more effective approaches to deal with domain
generalization.
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Table 6: DCASE 2022 Task 2 experimental results on development dataset(%). The value in the row “Total score” represents the harmonic
mean of the AUC and pAUC scores over all the machine types, sections, and domains.

Baseline(MNv2) Baseline(AE) System1 System2 System3 System4

ToyCar

Self-supervised classification weight - - 0.1 0.2 0.2 0.3
Autoencoder weight - - 0.4 0.3 0.3 0.2
Binary classification weight - - 0.5 0.5 0.5 0.5
Distance metric weight - - 0 0 0 0
h-mean AUC(source) 59.17 91.41 76.42 73.69 73.69 71.49
h-mean AUC(target) 52.28 35.01 83.76 82.68 82.68 81.14
h-mean pAUC 52.31 52.70 63.52 62.00 62.00 61.25

ToyTrain

Self-supervised classification weight - - 0.8 0.7 0.8 0.7
Autoencoder weight - - 0 0 0 0
Binary classification weight - - 0.1 0.2 0.2 0.3
Distance metric weight - - 0.1 0.1 0 0
h-mean AUC(source) 58.32 76.32 73.50 74.63 73.18 73.96
h-mean AUC(target) 46.19 23.51 64.61 63.97 64.22 63.22
h-mean pAUC 51.56 50.50 58.73 59.41 58.52 58.94

bearing

Self-supervised classification weight - - 0.2 0.2 0.2 0.3
Autoencoder weight - - 0 0 0 0
Binary classification weight - - 0.8 0.8 0.8 0.7
Distance metric weight - - 0 0 0 0
h-mean AUC(source) 62.89 54.45 85.20 85.20 85.20 84.83
h-mean AUC(target) 61.72 58.66 88.11 88.11 88.11 87.19
h-mean pAUC 57.57 52.03 67.75 67.75 67.75 67.88

fan

Self-supervised classification weight - - 0.4 0.4 0.3 0.5
Autoencoder weight - - 0 0 0 0
Binary classification weight - - 0.2 0.2 0.2 0.3
Distance metric weight - - 0.4 0.4 0.5 0.2
h-mean AUC(source) 71.35 78.59 96.18 96.18 96.01 96.42
h-mean AUC(target) 48.54 47.23 84.49 84.49 84.49 84.45
h-mean pAUC 57.05 57.53 80.25 80.25 79.99 80.15

gearbox

Self-supervised classification weight - - 0 0.2 0.2 0.3
Autoencoder weight - - 0.4 0.3 0.3 0.3
Binary classification weight - - 0.1 0.2 0.2 0.3
Distance metric weight - - 0.5 0.3 0.3 0.1
h-mean AUC(source) 69.60 68.94 93.34 93.25 93.25 92.52
h-mean AUC(target) 56.57 62.64 80.06 77.26 77.26 75.65
h-mean pAUC 56.13 58.50 66.71 67.03 67.03 66.65

slider

Self-supervised classification weight - - 0.6 0.7 0.7 0.3
Autoencoder weight - - 0.3 0.1 0.1 0
Binary classification weight - - 0.1 0.2 0.2 0.3
Distance metric weight - - 0 0 0 0.4
h-mean AUC(source) 66.13 77.95 97.64 98.06 98.06 98.61
h-mean AUC(target) 40.58 47.70 86.69 86.30 86.30 85.32
h-mean pAUC 54.70 55.78 83.38 82.76 82.76 80.86

valve

Self-supervised classification weight - - 0.7 0.4 0.4 0.5
Autoencoder weight - - 0 0 0 0
Binary classification weight - - 0.1 0.2 0.2 0.3
Distance metric weight - - 0.2 0.4 0.4 0.2
h-mean AUC(source) 67.18 52.04 90.38 90.06 90.06 89.36
h-mean AUC(target) 57.49 49.47 90.86 90.91 90.91 90.75
h-mean pAUC 62.49 50.36 83.29 82.95 82.95 82.94

Total score 56.58 52.71 79.11 78.71 78.55 78.02


