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ABSTRACT

In this report we present our system for the Detection and Classi-
fication of Acoustic Scenes and Events (DCASE) 2022 Challenge
Task 4: Sound Event Detection in Domestic Environments'. As in
previous editions of the Challenge, we use forward-backward con-
volutional recurrent neural networks (FBCRNNs) [1, 2] for weakly
labeled and semi-supervised sound event detection (SED) and even-
tually generate strong pseudo labels for weakly labeled and un-
labeled data. Then, (tag-conditioned) bidirectional CRNNs (Bi-
CRNNSs) [1, 2] are trained in a strongly supervised manner as our fi-
nal SED models. In each of the training stages we use multiple iter-
ations of self-training. Compared to previous editions, we improved
our system performance by 1) some tweaks regarding data augmen-
tation, pseudo labeling and inference 2) using weakly labeled Au-
dioSet data [3] for pretraining larger networks and 3) augmenting
the DESED data [4] with strongly labeled AudioSet data [5] for
finetuning of the networks. Source code is publicly available at
https://github.com/fgnt/pb_sed.

Index Terms— pre-training, self-training, sound event detec-
tion, polyphonic sound detection

1. MODELS

As in [2] the input features to all models are 128-dimensional log-
mel energy features. For feature extraction we resample audio clips
to 16 kHz and compute the short-time Fourier transform (STFT)
using a window size and hop size of 960 and 320 samples, respec-
tively, yielding a frame rate of 50 Hz.

1.1. Forward-Backward CRNN

The FBCRNN [1, 2], which is illustrated in Fig. 1, has been devel-
oped for the training with weak labels. It consists of a shared CNN
front-end and separate forward and backward classifiers. Note, that
differently to bidirectional RNNs the forward and backward RNNs
do not exchange hidden representations here.

The core idea is, that at each point in time a tagged sound is ei-
ther active somewhere before that point in time, or somewhere after
that point in time or both. Therefore, the objective of the FBCRNN
is that at each input frame a tagged sound must either be recognized
by the forward classifier, which has processed all previous frames
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Figure 1: FBCRNN

plus the current frame, or by the backward classifier, which has pro-
cessed all subsequent frames plus the current frame:

yi’x:}lk) = max (7n,ka ?n,k), (1)
L = =2 log(yy5:”) — (1 = 2") log (1 — ™).
2

This way, the classifiers are encouraged to output high classifica-
tion scores for active events as soon as possible and before having
processed the whole audio clip. This enables the FBCRNN to be
applied to much shorter segments at test-time than used for train-
ing. If we do have strong labels, however, we can derive desired
outputs 7nk and ?nk and output scores are directly compared
with the desired outputs using binary cross entropy (BCE):

Lok = — (Znklog(Fni) + (1= Zni)log(l — Fnk))/2

- (?n,k lOg(?n,k) +(1- ?n,k) log(1 — ?n,k))/%?))

At test time a tag prediction is obtained as 7, = o n.x/24+ Y 1,6/2-
Also, SED can be achieved by performing tagging in small windows
around each frame as illustrated in Fig. 2. For more details please
refer to [1, 2].

1.2. Bidirectional CRNN

In a second training stage, and after having generated strong pseudo
labels for weakly labeled and unlabeled data, we train BICRNNS,
i.e., where forward and backward RNNs do exchange hidden repre-
sentations and where we only have a single fully connected classifi-
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Figure 2: FBCRNN-based SED as tagging in small windows.
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Figure 3: Neural Network Architectures with m € {1,2}. Dashed
blocks are only used when m = 2. ConvXd(k,c) represent X-
dimensional convolutional layers with kernels size k, stride 1 and
c output channels. For 2-dimensional convolutions the kernel is al-
ways quadratic (k x k). The grey convolution is only performed if
output channels do not match input channels. The number of units
in the GRU blocks refer to the number of units in each of the for-
ward and backward GRUs for both FBCRNNs and BiCRNNS.

cation network outputting strong label predictions. Here, a standard
strong label BCE loss is used for training.

In previous editions of the Challenge we exclusively used tag-
conditioned networks [1, 2], i.e., where a multi-hot tag prediction

vector 2" is concatenated to the inputs of the convolutional and
recurrent networks with 2" =[5, > ] being one if 7, >

else zero. While tag-conditioning has shown in [1] to improve per-
formance in terms of collar-based Fi-score [6], we recently found
that it harms performance in terms of PSDS [7]. An intuitive expla-
nation for this is the following. The poly-phonic sound event de-
tection score (PSDS), which is the area under the PSD-ROC curve,
evaluates performance over various operating points whereas the
thresholds o for tag prediction are tuned towards a single oper-
ating point (F1-score in our case). Therefore, it should be harder
to put the system in a different operating mode when being condi-
tioned on tag predictions from another operating mode.

Therefore, we use tag-conditioned BiCRNNs for pseudo label-
ing within the self-training procedure (and when targeting collar-
based F-score performance), but finally we train unconditioned Bi-
CRNNSs when targeting PSDS performance.
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1.3. Neural Network Architectures

Our employed neural network architecture is shown in Fig. 3. We
consider the two settings m € {1, 2} here. While m = 1 refers to
the model architecture used in our previous work [2], m = 2 gives
a deeper and wider architecture, which, however, does not affect the
receptive field of the network. We set m = 2 when using external
data for model training whereas we set m = 1 without external data
usage.

2. TRAINING PROCEDURE

2.1. Data Preparation/Augmentation

In all trainings we use the same data preparation/augmentation
as described in [2] with the following adjustments. Inspired by
SpecAugment [8], we add a time warping augmentation, where, for
each audio clip, we sample a random anchor from a uniform dis-
tribution 2/(0.4N,0.6N), where N is the number of frames in the
clip, and warp the anchor left or right by a random shift sampled
from a uniform distribution ¢/ (—0.1N, 0.1 N') without changing the
length of the audio clip. The time warping is implemented by using
different STFT hop sizes left and right to the anchor.

Further, we perform an unshifted superposition instead of a
shifted superposition here, which keeps the lengths of the super-
posed audio clips similar to the lengths of the original clips.

2.2. Pre-Training

When using external training data, we pre-train an FBCRNN model
on the whole AudioSet with ~1.8 M audio clips that we were able
to download. Training is performed for 500 k update steps using
a batch size of 32 and Adam optimizer [9] with a learning rate of
5-10™%. During training we perform a balancing of the 527 event
classes by repeating clips with rare event classes so that there are for
each event class at least 10 k clips per epoch. Our final checkpoint
achieves a mean average precision of 42.66% on AudioSet’s eval
set.

2.3. Self-Training

Our self-training procedure is illustrated in Fig. 4. It is mostly the
same as in [2] with minor changes in the number of training steps,
larger ensemble sizes and different strong pseudo labeling hyper
parameters. In all trainings Adam [9] is used for optimization with
a learning rate of 5 - 10™%, if not stated otherwise, and checkpoints
are saved every 1000 update steps.

2.3.1. With External Data

Here, we combine data from the DESED dataset [4] and from Au-
dioSet [5]. As before, we repeat certain subsets multiple times
within a training epoch to balance the training data. The training
data is composed of 10 times the weakly labeled real data (10-1578
examples), 10 times the strongly labeled external real data from the
baseline system (10-3470 examples), 2 times pseudo labeled unla-
beled real data if used (2-14412) and 2 and 1 times strongly labeled
synthetic data from the 2020 (2-2576) and 2021 (1-10000) editions
of the Challenge, respectively.

FBCRNNS are initialized with the pre-trained FBCRNN model
up to the output layer, whereas for BICRNN s only the convolutional
layers are initialized with those from the pre-trained FBCRNN
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Figure 4: Self-Training Procedure

model. In all trainings all the Conv2d layers and the first Convld
layer are frozen. The rest of the network is fine-tuned/trained
for 20k update steps if not stated otherwise. Note, that for tag-
conditioned BiCRNNsS, the tag predictions are only concatenated to
the RNN input, as the CNN is to be initialized with the pre-trained
weights.

Initially, an ensemble of 10 FBCRNNSs is fine-tuned without
using the unlabeled data for 10 k update steps. For each FBCRNN
we choose the checkpoint that achieved the best tagging Fq-score
on the validation set and combine them in an ensemble where the
ensemble output scores are given as an average over the individ-
ual output scores. The ensemble is used to generate weak pseudo
labels for all the examples in the unlabeled data set. Further, outer
event boundaries are detected for some of the tags in the weakly and
pseudo labeled unlabeled data as described in [2]. We now perform
3 iterations of self-training including the pseudo labeled data. In
each iteration 10 new FBCRNNSs are fine-tuned, with the resulting
ensemble being used to rerun the pseudo labeling.

However, the performance of the FBCRNN ensembles do not
improve a lot over the self-training iterations anymore when using
the pre-trained weight initialization. Therefore, we simply combine
all the FBCRNNSs from the 4 training iterations into a large final
FBCRNN ensemble consisting of 40 sub-models. The final ensem-
ble is used for SED, as illustrated in Fig. 2, to strongly pseudo label
the weakly and unlabeled data. Here, event-specific window sizes,
median filter lengths for post-processing and decision thresholds are
tuned to give best collar-based F;-score on the validation set (rather
than best frame-based Fi-score as in previous editions). Further,
the SED scores are masked according to the (predicted) tags here,
i.e., SED scores for a certain event class can only be >0 if the event
class has also been tagged in the audio clip, which we refer to as
tag-masking in the following.

Next, we perform 3 iterations of strongly labeled self-training
of tag-conditioned BiCRNN ensembles, each consisting of 10 Bi-
CRNNs. Here, those training checkpoints are chosen as final mod-
els which achieve highest frame-based Fi-score on the validation
set when not using median filtering as post-processing. For the final
ensemble, event-specific median filter lengths and decision thresh-
olds are tuned to give best collar-based F1-score on the validation
set. Each iteration ends with a strong pseudo re-labeling of the
weakly and unlabeled data.

While validation performance significantly improves after the
first strong pseudo re-labeling, it does not further improve after-
wards. Therefore, we train 10 unconditioned BiICRNNSs using the
pseudo labels provided by the first tag-conditioned BiCRNN en-
semble and another 10 using the pseudo labels provided by the
second tag-conditioned BiCRNN ensemble, which are combined
into our final unconditioned BiCRNN ensemble consisting of 20
BiCRNNs.  Similarly, we combine the second tag-conditioned
BiCRNN ensemble (which as been trained using the pseudo la-
bels provided by the first tag-conditioned BiCRNN ensemble) and

the third tag-conditioned BiCRNN ensemble into our final tag-
conditioned BiCRNN ensemble.

2.3.2. Without External Data

When not using the external data, models are not initialized with
the pre-trained weights and we use 20 times the weakly labeled real
data in one epoch and no strongly labeled external real data. Further,
a learning rate rampup to 5 - 10~% over the first 1000 update steps is
used. Training of the initial FBCRNN is performed for 30 k update
steps, where the learning rate is reduced to 10™* after 20 k update
steps. Following trainings including pseudo labeled data run for
45 k update steps, where the learning rate is reduced to 10™* after
30k update steps.

Here, without the pre-training, the performance increases over
the self-training iterations and we only combine the 20 FBCRNN5s
from self-training iterations 2 and 3 into our final FBCRNN ensem-
ble. Also we have not performed a third iteration of strongly labeled
self-training here, but simply use the 10 unconditioned BiCRNNs
trained using the pseudo labels provided by the first tag-conditioned
BiCRNN ensemble as our final unconditioned BICRNN ensemble.

3. RESULTS

We report results on the validation portion of the DESED dataset [4]
in terms of

e approx. PSDS1/PSDS2: PSDSs [7] computed with the
psds_eval® package using 50 linearly spaced thresholds with
two different sets of metric parameters which are the official
metrics used in the challenge'.

e true PSDS1/PSDS2: In [10] it has been shown that the PSDS
approximation using a limited set of thresholds may signifi-
cantly underestimate the true PSDS which is obtained when
taking all possible thresholds into account. Therefore, we
here also report the true PSDSs, which we compute using the
sed_scores_eval® package, as a reference.

° F(f"“'“): macro-average collar-based F;-score [6] with a 200 ms
collar on onsets and a 200 ms / 20% of the event length collar
on offsets.

We report results for the following systems that we submitted
to the Challenge:

e Ensemblel: final unconditioned BiCRNN ensemble (40
FBCRNNS for tagging plus 20 BiCRNNSs for SED) with hyper-
parameters tuned towards good PSDS1 performance on valida-
tion set.

2https://github.com/audioanalytic/psds_eval
3https://github.com/fgnt/sed_scores_eval
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Table 1: Submitted systems’ performances on validation set. The
column “ext” indicates whether external data has been used. Bold
values indicate best performance.

PSDS1 PSDS2
System  ext|approx true |approx true | F{
Baselinel .336 .536 40.1%
Baseline2 v | .351 .552 42.9%

Ensemblel v | .512 .521| .772 .817|65.4%
Ensemble2 v | .093 .080| .868 .877| 9.1%
Ensemble3 v | .483 .498| .713 .778|68.0%
Ensemble4 492 504 | 721 .765 |60.5%

e Ensemble2: final FBCRNN ensemble (40 FBCRNNSs) per-
forming tagging in segments with a segment length of 5s. This
model aims at high PSDS2 performance. No further hyper-
parameters need to be tuned.

e Ensemble3: final tag-conditioned BiCRNN ensemble (40
FBCRNNES for tagging plus 20 BiCRNNSs for SED) with hyper-
parameters tuned towards good collar-based F;-score perfor-
mance on validation set.

e Ensemble4: final unconditioned BiCRNN ensemble without
external data usage (20 FBCRNNs for tagging plus 10 Bi-
CRNNs for SED) with hyper-parameters tuned towards good
PSDS1 performance on validation set.

The following hyper-parameters are tuned individually for each
event class

e Median filter length
e Decision threshold for collar-based F1-score evaluation
e Whether to use tag-masking or not

Note, that in the previous edition our model tended to output
either very high or low scores which is why we tuned a non-linear
score transformation on the validation set to bring the approximate
PSDSs closer to the true PSDSs. For the current models, however,
such score transformation did not bring the targeted approximate
PSDS significantly closer to the true PSDS, which is why we do
not use a score transformation in the submitted systems. Also note,
that previously we used tag-masking for all events which turned out
to significantly degrade PSDS performance (probably for the same
reason why tag-conditioning degrades PSDS performance as dis-
cussed above). Therefore, we now only use tag-masking for those
event classes for which it increases validation performance.

Results are shown in Table 1. It can be seen that our systems
significantly outperform the baselines w.r.t. all metrics.

Due to the limitation in the number of systems that can be sub-
mitted, we only submitted large ensembles to achieve best perfor-
mance. Here, however, we also report in Table 2 the validation per-
formance, when using at most a single FBCRNN and a single Bi-
CRNN. For this we choose those models from the ensembles which
perform best according to the corresponding checkpoint selection
criterion (for FBCRNN: best tagging F;-score on validation set, for
BiCRNN: best frame-based F1-score on validation set without post-
processing) and refer to the systems as Singlel-Single4. It can be
seen that the single model system performances do not lie far be-
hind the ensemble performances, while they only require a small
fraction of the memory and computational resources at test-time.
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Table 2: Non-submitted single model systems’ performances on
validation set. The column “ext” indicates whether external data
has been used. Bold values indicate best performance.

PSDS1 PSDS2
System ext|approx true |approx true | F{M
Baselinel .336 .536 40.1%
Baseline2 v | .351 .552 42.9%

Singlel v | .505 .515| .757 .807|57.3%
Single2 v | .077 .089| .858 .866| 9.1%
Single3 v | .466 .481| .685 .769|66.8%
Single4 481 497 703 .769 | 58.2%
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