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ABSTRACT

This technical report presents a multi-task learning model
based on recurrent variational autoencoders (VAEs). The
proposed method employs recurrent VAEs with shared pa-
rameters to simultaneously learn the tasks of strong labeling,
weak labeling and feature sequence reconstruction. During
the training stage, the model receives as input strongly la-
beled, weakly labeled data and unlabeled data and it simulta-
neously optimizes frame-based and file-based cross-entropy
losses for strongly labeled and weakly labeled data, respec-
tively, as well as the reconstruction loss for the unlabeled
data. Using a shared posterior among all task branches, the
model projects the input data for each task into a common la-
tent space. The decoding of latents sampled from this com-
mon latent space, in combination with the shared parame-
ters among task branches act jointly as a regularizer that pre-
vents the model from overfitting to the individual tasks. The
proposed method is evaluated on the DCASE-2022 Task4
dataset on which it achieves an event-based macro F1 score
of 32.5% on the validation set and 31.8% on the public eval-
uation set.

Index Terms— Sound event detection, multi-task learn-
ing, variational autoencoder, semi-supervised learning

1. INTRODUCTION

Sound Event Detection (SED) is the process of identifying
sounds in the environment, such as a human speaking, a dog
barking, a vaccum cleaner etc. [1]. Besides the understand-
ing of the environment that it provides, it can also be used as
feedback to other systems that are capable of taking actions,
as it is the case with the triggering of an alarm. In recent
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years, neural networks have contributed to notable improve-
ments in the performance of SED systems. Convolutional
Neural Networks (CNNs) [2, 3], Recurrent Neural Networks
(RNNs) [4, 5], Convolutional RNNs (CRNNs) [6, 7] and
Transformers [8, 9, 10] have been used with success as the
backbone of SED systems.

The main drawback of neural-network based approaches
is that a large amount of labeled data is required during a
supervised training stage. There are two main SED varia-
tions, i.e., strong and weak audio event tagging. In the case
of strong tagging, an SED system must detect both the audio
event type and the respective endpoints. In the case of weak
tagging, the SED system must only detect the presence of the
audio event. The strong tagging task requires audio data to
be annotated with timestamps that provide the beginning and
end of each audio event occurrence. This type of data, known
as strongly labeled data, are difficult, time-consuming and
costly to collect in amounts that are sufficient to effectively
train neural-network based approaches via supervised learn-
ing. Emphasis has therefore been placed on developing train-
ing methods which reduce the requirements for strongly an-
notated data, while remaining effective. These range from
simple data augmentation techniques to weakly-supervised
and semi-supervised learning methods. Data augmentation
has proved to be an effective technique to improve the gener-
alization capabilities of SED models by performing random
or targeted processing on existing data to artificially generate
new data samples [2, 3]. Furthermore, several SED model ar-
chitectures and training schemes have been proposed which
can take advantage of weakly labeled and/or unlabeled data
to improve generalization while reducing the requirements
for strongly labeled data [8, 11, 12].

Multi-Task Learning (MTL) [13] is a method where
a model can learn to solve multiple tasks simultaneously,
while exploiting possible common characteristics and dif-
ferences across them. Such a model can achieve improved
performance on each individual task compared to a model
that learns to solve each problem in isolation. MTL has
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been applied to the domain of weakly-supervised and semi-
supervised SED [14, 15, 16] with promising results. Previous
works have combined MTL with Variational Auto-Encoders
(VAEs) [17, 18, 19, 20] and showed that projecting input fea-
tures for each task into latent representations sampled from
the posterior of a variational encoder can improve regular-
ization of shared features for downstream tasks and is more
robust to noise and outliers in the input features.

In this work we propose an SED model based on the
MTL-VAE principle and RNNs. We then simultaneously
train the model on three audio event tagging tasks, each hav-
ing its own dataset as provided by the DCASE-Task4 2022
challenge: strong tagging on synthetic audio data, weak tag-
ging on real audio data and strong tagging on real audio
data. The model is also simultaneously trained on a fourth
task: reconstruction of unlabeled audio features. We demon-
strate that the model is able to leverage cross-task informa-
tion to achieve superior performance on the task of strong
audio event tagging on real data, which is the task of interest,
compared to the case when it is trained on this task with-
out MTL. We also demonstrate that using a VAE architecture
improves generalization performance. Our MLT-VAE SED
model achieved 32.5% event-based macro F1 score on the
DCASE-Task4 2022 challenge validation set and 31.8% on
the public evaluation set, without using data augmentation.

2. PROPOSED METHOD

2.1. Network architecture

The proposed MTL-VAE architecture for SED is demon-
strated in Figure 1. It consists of a variational encoder for
each task input and all encoders share weights. The result-
ing outputs of the variational encoders are shared stochastic
latent representations of the input features of all downstream
tasks. The latent representations are inputs to decoders with
shared weights, with each decoder being responsible for a
respective task. Each decoder is followed by a classifica-
tion head which outputs either frame-level predictions for
the strong audio event tagging or file-level predictions for the
weak tagging tasks. The decoder responsible for the recon-
struction task is followed by a feature reconstruction head.

2.2. Training procedure

For the concurrent training on all four tasks, the final objec-
tive that the model must optimize for is the sum of four ob-
jectives, one for each task, specifically: 1) frame-level cross-
entropy for the strong synthetic audio event tagging task, 2)
file-level cross-entropy for the weak real audio event tagging
task, 3) frame-level cross-entropy for the strong real audio
event tagging task, and 4) reconstruction error for the unla-
beled data reconstruction task. To that sum we must add the
KL-divergence objective between the posterior of the VAE
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Figure 1: Overview of the architecture of our proposed MTL-
VAE architecture. Input features for each task are encoded
into a shared latent representation by variational encoders
with shared weights. Decoders with shared weights perform
the tasks of audio event prediction and audio feature recon-
struction.

and a Gaussian prior N (0, 1). Based on the above, the final
objective is:

L =2 % BCEspong + BCEyeas + MSE + KLD (1)

We use the Adam optimizer [21] with a learning rate of
5% 10~ and a batch size of 32. Each batch contains syn-
thetic audio data with strong labels, real audio data with weak
labels, real unlabeled audio data, and real audio data with
strong labels from the Audioset dataset [22].

3. EXPERIMENTS

3.1. Effects of Multi-Task Learning

The results of our experiments are summarized in Figure 2.
When using all four types of data (synthetic strongly labeled,
real weakly labeled, unlabeled, real strongly labeled) to si-
multaneously learn four tasks (strong event tagging on syn-
thetic audio data, weak event tagging on real audio data, re-
construction of unlabeled data and strong event tagging on
real audio data) we observe an event-based macro F1-score
of 32.5% on the DCASE-Task4 2022 validation set and a
score of 31.8% on the public evaluation set. We also observe
a segment-based macro Fl-score of 60.6% on both the vali-
dation and public evaluation sets.

We conduct an ablation study to assess the impact of
each additional learned task to the performance of the multi-
task model. We observe that when the model is only trained
for strong event tagging on synthetic audio data with strong
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Validation Public evaluation

Data used EB-F1 [%] SB-F1 [%] EB-F1 [%] SB-F1 (%]
Synthetic only 12.6 314 12.4 38.0
Synthetic + weak 11 48.4 11.2 52.5
Synthetic + weak + unlabeled 12.5 50.9 11.6 54.4
Synthetic + weak + unlabeled + Audioset 325 60.6 318 60.6
Audioset only 19.8 41.8 18.5 37.6

Figure 2: Event-based and segment-based macro F1-scores
on the validation and public evaluation sets of our proposed
SED model. The best results are obtained when the model is
trained on all four tasks (synthetic audio data strong tagging,
real audio data weak tagging, unlabeled audio data recon-
struction, real audio data strong tagging). Each additional
task improves classification performance.

Validation Public evaluation

Encoder type EB-F1 [%] SB-F1 [%] EB-F1 [%] SB-F1 [%]
Deterministic 28.6 59.1 27.2 59.7
Variational 325 60.6 31.8 60.6

Figure 3: Performance comparison of the proposed SED
model when the encoder is deterministic and when it is vari-
ational. A variational encoder seems to improve general-
ization ability and improves the event-based macro F1 score
over using a deterministic encoder.

event labels, it has the worst scores on the classification met-
rics with an event-based macro Fl-score of 12.6% and a
segment-based macro Fl-score of 31.4% on the validation
set, as well as 12.4% and 38.0% respectively on the public
evaluation set.

Adding the task of weak event tagging on real audio data
with weak event labels improves the segment-based F1-score
to 48.4% and 52.5% on the validation and public evaluation
sets respectively, but the event-based F1 score does not im-
prove. Further adding the task of reconstruction of unlabeled
audio data improves the segment-based Fl-score to 50.9%
and 54.4% on the validation and public evaluation sets, re-
spectively.

Finally, the addition of the task of strong event tagging
on real audio event data with strong event labels (from the
Audioset dataset) significantly improves the event-based F1-
score to 32.5% on the validation set and 31.9% on the public
evaluation set. The segment-based F1-score further improves
to 60.6% on both sets. This most likely occurs because the
real audio dataset with strong event labels and, consequently,
the task of strong event tagging on real audio data have the
closest domain proximity to the validation and public eval-
uation datasets, which are also real audio data with strong
event labels. Therefore, it is not a surprise that this task has
the largest contribution to the information extracted by the
MTL model.

However, when training only on the Audioset data and
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learning only the task of strong event tagging on real audio
data, the final performance is significantly lower than when
training on all tasks using all types of data. The event-based
F1 score drops to 19.8% and 18.5% on the validation and
public evaluation sets respectively, while the segment-based
F1 score becomes 41.8% and 37.6%, respectively. This un-
derlines the effectiveness of MTL and that all data types and
their respective tasks contribute to the ability to learn more
robust representations that generalize better.

3.2. Contribution of VAEs

Figure 3 compares the event-based and segment-based macro
F1 scores achieved on the validation and public evaluation
sets by the MTL model when the encoder is deterministic
and when it is variational. Using a variational encoder leads
to an improvement in the event-based F1 score of approxi-
mately 4% and an improvement of 1% in the segment-based
F1 score. We conclude that this is due to the better general-
ization ability of the variational autoencoder architecture. In-
troducing stochasticity into the latent representations of each
encoded task data features and constraining the shared latent
space to be close to a Gaussian prior leads to improved regu-
larization of learned task data representations.

4. CONCLUSION

In this work we designed a Multi-Task Learning (MTL)
model based on a recurrent autoencoder architecture with
variational information bottleneck. We applied this MTL
model to the challenge of learning Sound Event Detection
when only a limited amount of annotated training data is
available, as outlined in DCASE Task4. For each of the four
types of data provided by the DCASE Task4 dataset, we as-
signed a task to be learned: strong audio event tagging from
the synthetic audio data with strong event labels, weak audio
event tagging from the real audio data with weak event la-
bels, reconstruction of real unlabeled data from the provided
real audio data without annotations, and strong audio event
tagging from the real audio data with strong event labels.
The model is trained simultaneously on all tasks and has the
ability to exploit cross-task information through parameter
(weight) sharing between the autoencoders appointed to each
task and through projecting the encoded features for each
task data into a shared latent space. We then demonstrate
that this MTL scheme significantly improves the model’s
classification accuracy, as measured by the event-based and
segment-based macro F1 scores, in the validation and public
evaluation datasets of DCASE Task4, with each additional
learned task contributing to improving the model’s final per-
formance. We also found that introducing stochasticity into
the shared latent representations, by using variational instead
of deterministic encoders further improves classification per-
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formance through better cross-task generalization, since the
stochasticity introduced into latent representations acts as a
regularizer.
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