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ABSTRACT

This report proposes an anomalous sound detection method based
on feature extraction and anomaly detection for DCASE 2022 task
2. In order to recognize the anomaly sound when only the normal
sound is used as the training data, we use the clip of the spectro-
gram and the corresponding section name to train a feature extrac-
tor to generate the features of the normal sound. Then the anomaly
detector is used to calculate the intensity of anomaly between the
test sound features and the normal sound features, to provide the
anomaly score of the test sound. In view of the domain gen-
eralization, the source domain and target domain select different
shifts when clipping spectrum, and select different anomaly detec-
tors based on whether the sound belongs to the source domain or
target domain.

Index Terms— Anomalous sound detection, domain general-
ization, feature extraction, anomaly detection

1. INTRODUCTION

The purpose of unsupervised anomalous sound detection is to deter-
mine whether a given sound sample is similar to the training data,
that is, the anomaly sound is substantially different from the train-
ing data [1]. In DCASE 2020, unsupervised methods are used for
anomalous sound detection. In DCASE 2021, domain shift is added
on the basis of DCASE 2020, so only a small amount of target do-
main training data is needed to detect anomaly sound in source do-
main and target domain, respectively. This year DCASE 2022 in-
troduces domain generalization while retaining the features of the
two previous years.

In the test sound provided by DCASE 2022 [2, 3], samples not
affected by domain shift (source domain) and samples affected by
domain shift (target domain) are mixed, and the domain is not spec-
ified. Therefore, the anomaly detector must detect anomaly sound
for specific machine types and specific sections without knowing
the domain [4].

Since the method of self-supervised sound feature extraction
in DCASE 2021 performs well [5, 6, 7], this report uses the sec-
tion names classification under different machines as a proxy task
to mine the features of normal sounds, to learn valuable information
for anomalous sound detection.

In this report, we apply an anomalous sound detection method
using feature extractor and anomaly detector. The rest of this article
is organized as follows. Section 2 introduces the anomaly scoring
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Figure 1: Diagram of the preprocessing stage.

system, including preprocessing, feature extraction, anomaly de-
tection, domain generalization techniques and selection. Section
3 presents some additional approaches for the challenge as a com-
plement to the anomaly scoring system. Section 4 shows the results
of the methodology proposed in this report on development dataset.
Finally, section 5 summarizes the methods and conclusion of this
report.

2. ANOMALY SCORING SYSTEM

2.1. Preprocessing

The schematic diagram of preprocessing is shown in Fig. 1, and
then the parameter are discussed.

The short-time Fourier transform (STFT) is used to analyze
how the frequency content of the sound changes over time. This
report slides the 2046 points analysis window over the signal and
calculates the discrete Fourier transform of the windowed data. The
window hops over the original signal at intervals of 512 samples.
Raised cosine window functions taper off at the edges to avoid spec-
tral ringing.

Then, the input of the feature extractor is obtained by concate-
nating 32 consecutive frames of the spectrogram and shift 16 frames
(for source domain) or 2, 4, 8 frames (for target domain and differ-
ent submissions) at a time.
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Figure 2: Structure of downsample block of the ConvNeXt. (a) after
input; (b) after residual block.
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Figure 3: Structure of residual block of the ConvNeXt.

2.2. Feature extractor

A state-of-the-art convolutional network architecture called Con-
vNeXt [8] is used to extract features that characterize normal sound.
The main blocks for ConvNext are shown in Fig. 2 and Fig. 3.

The input of the neural network is the 32 consecutive frames
with 1024 frequency points, through a down-sampling layer shown
in Fig. 2 named Patchify Stem which is implemented using a 4×4,
stride 4 non-overlapping convolutional layer.

Four residual structures with large 7 × 7 convolution kernels
and inverse bottleneck layer are used in the middle stages which
is shown in Fig. 3. From Fig. 2, layer normalization and 2 × 2
convolution are used as the down-sampling layer between residual
structures to reduce the size of features.

Finally, layer normalization is used to compress features to only
retain channel information, and then a fully connected layer is used
to output 1000-dimensional features.

The specific configurations of feature extractor are shown in the
Table 1.

Table 1: Configurations of the ConvNeXt feature extractor

Layers Configurations Shape

input 1× 1024× 32
downsample1(stem) 4× 4, 96, stride 4 96× 256× 8

res-block1

 d7× 7, 96
1× 1, 384
1× 1, 96

× 3 96× 256× 8

downsample2 2× 2, 192, stride 2 192× 128× 4

res-block2

 d7× 7, 192
1× 1, 768
1× 1, 192

× 3 192× 128× 4

downsample3 2× 2, 384, stride 2 384× 64× 2

res-block3

 d7× 7, 384
1× 1, 1536
1× 1, 384

× 9 384× 64× 2

downsample4 2× 2, 768, stride 2 768× 32× 1

res-block4

 d7× 7, 768
1× 1, 3072
1× 1, 768

× 3 768× 32× 1

layer norm 768× 1× 1
dense 1000

To make the features of normal sound more compact, this report
tries SphereFace[9], CosFace[10], ArcFace[11], finally using the
Additive Angular Margin Loss[12].

2.3. Anomaly detector

After obtaining the deep features of normal sounds, the distributions
of all normal sounds should be calculated. Therefore, the Local
Outlier Factor [13] algorithm is used as the anomaly detector to
describe the intensity of anomaly.

When the test sound is input, the trained feature extractor is
used to output the features of the test sound. The features deviating
from the normal distribution will be regarded as anomaly.

2.4. Domain generalization techniques

Since there is very little training data available in the target domain,
the feature extractor is only trained by the sound in the source do-
main, and then a new full connection layer is fine-tuned to extract
the features of the target domain. When training the anomaly detec-
tor, the anomaly scores of normal sound in the source domain and
target domain are scaled to the same maximum and mean values,
so the model can detect anomalies with the same threshold value
regardless of the domain.

Another way to balance source and target domain data is to se-
lect different shifts during preprocessing step. In other words, the
shift of the target domain is smaller, resulting in an increase in the
number of normal sound clips of the target domain used for training.

2.5. Selection

The initial state and hyperparameters in the model will affect the
final performance, to make the final performance better, and con-
sidering the development and evaluation datasets have different sec-
tions, the model that perform best for each machine type is selected.
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Table 2: Harmonic mean of the AUC and partial AUC on Development Dataset
Toy car Toy train Bearing Fan Gearbox Slide rail Valve

Autoencoder-based baseline
AUC (source) 88.53% 76.66% 54.37% 79.25% 68.99% 78.77% 51.93%
AUC (target) 36.16% 20.61% 58.19% 48.09% 63.15% 46.54% 48.79%

pAUC 53.07% 48.57% 52.96% 57.96% 57.81% 55.19% 50.47%

MobileNetV2-based baseline
AUC (source) 56.61% 59.41% 73.85% 74.07% 65.36% 64.36% 67.50%
AUC (target) 48.61% 47.50% 59.68% 43.74% 53.98% 38.85% 64.00%

pAUC 50.94% 52.71% 57.34% 54.85% 56.46% 54.71% 63.90%

Section-specific AE system
(Not submitted)

AUC (source) 88.22% 78.13% 54.04% 77.82% 72.02% 81.27% 54.19%
AUC (target) 54.58% 34.19% 57.13% 47.40% 62.85% 55.95% 50.53%

pAUC 53.52% 51.61% 51.56% 58.15% 57.63% 57.60% 50.59%

Proposed system, shift=2
(Submission 1)

AUC (source) 79.00% 67.08% 59.34% 67.43% 87.12% 66.71% 65.90%
AUC (target) 62.92% 42.99% 63.08% 58.37% 76.25% 67.29% 57.30%

pAUC 62.07% 53.49% 53.49% 64.45% 63.25% 62.02% 51.96%

Proposed system, shift=4
(Submission 2)

AUC (source) 48.50% 58.31% 53.35% 70.06% 68.13% 72.17% 73.05%
AUC (target) 57.91% 48.56% 61.77% 52.94% 57.59% 64.53% 77.10%

pAUC 52.75% 52.23% 51.80% 64.40% 54.72% 58.09% 67.91%

Proposed system, shift=8
(Submission 3)

AUC (source) 69.52% 61.59% 56.40% 70.38% 80.22% 67.86% 64.75%
AUC (target) 60.19% 35.47% 53.85% 69.96% 65.37% 58.75% 51.60%

pAUC 57.15% 50.94% 48.91% 69.61% 59.44% 58.38% 55.50%

Selection
(Submission 4)

AUC (source) 79.00% 67.08% 73.85% 70.38% 87.12% 81.27% 73.05%
AUC (target) 62.92% 42.99% 59.68% 69.96% 76.25% 55.95% 77.10%

pAUC 62.07% 53.49% 57.34% 69.61% 63.25% 57.60% 67.91%

3. OTHER ATTEMPTS

We also tried several methods to supplement the main method.
From the perspective of training data, the method proposed in this
report divides the data into 7 groups according to machine type. The
following attempt is to divide the data into 42 groups according to
section, and another attempt is to not distinguish the data.

3.1. Section-specific AE system

The training strategy has been improved for the autoencoder-based
baseline system [14, 15], and the autoencoder model is trained for
specific sections, increasing the total number of models from 7 to
42. For the scheme of reconstruction normal sound, more detailed
data differentiation can make the features of the bottleneck layer
more effective.

3.2. One-model system

An attempt is made to detect anomaly sound using only one model,
with the proxy task being used to distinguish all sections of all ma-
chine types, that is, to distinguish 42 classes at once. As one of
the main schemes of DCASE 2020 [16, 17], the advantage of one-
model is that all the data can be used for training. A larger amount
of data is more likely to improve the accuracy of the model.

4. EXPERIMENTAL RESULTS AND SUBMISSIONS

The method proposed in this report is used to train feature extractors
and anomaly detectors respectively for seven machines, including
fan, gearbox, bearing, slide rail, toy car, toy train and valve, each
of which has six sections on development dataset and additional
training dataset.

The proposed system and attempts are compared with the two
baseline systems. From the results shown in Table 2, the proposed

system performs significantly better in both the source and target
domains than the two baseline systems. In the proposed system, the
performance of domain generalization that judge the domain of the
test sound is mediocre. Section-specific AE system performed well
in slide rail, but is mediocre for the rest. However, the one-model
system does not outperform the rest of the models in every machine
types, so the results are not shown. For the machine type named
Bear, the MobileNetV2-based baseline has higher AUC and pAUC
harmonic mean performance than all the proposed systems.

In summary, the results obtained by three systems and one se-
lection result have been submitted to the challenge. The first result
comes from the process of feature extraction, anomaly detection and
domain generalization technology which is proposed in this report,
and shift equals to 2 when clipping spectrum in the target domain.
The second result comes from changing shift to 4 when clipping
spectrum in the target domain during domain generalization. The
third result comes from the proposed system whose shift equals to
8. The fourth result is the selection of the above three results and
section-specific AE result by machine type.

5. CONCLUSION

In this report, a domain generalization anomalous sound detection
system based on feature extraction is proposed. The system is com-
posed of multi-stage residual connection neural network, which is
used to extract features from the frequency spectrum of clips and
estimate the distribution of features by LOF. These estimated dis-
tributions are then used to calculate the intensity of anomaly of the
test sound clip and will combine all clips of an sound into the final
anomaly score. Experimental evaluations on the dataset of DCASE
2022 task 2 indicate that the proposed system significantly outper-
forms the challenge’s baseline system in AUC and pAUC in both
the source and target domains of the development dataset.
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