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ABSTRACT

This technical report describes the systems submitted to the
DCASE2022 challenge task 3: sound event localization and detec-
tion (SELD). The task aims to detect occurrences of sound events
and specify their class, furthermore estimate their position. Our sys-
tem utilizes a ResNet-based model under a proposed robust frame-
work for SELD. To guarantee the generalized performance on the
real-world sound scenes, we design the total framework with aug-
mentation techniques, a pipeline of mixing datasets from real-world
sound scenes and emulations, and test time augmentation. Aug-
mentation techniques and exploitation of external sound sources en-
able training diverse samples and keeping the opportunity to train
the real-world context enough by maintaining the number of the
real recording samples in the batch. In addition, we design a test
time augmentation and a clustering-based model ensemble method
to aggregate confident predictions. Experimental results show that
the model under a proposed framework outperforms the baseline
methods and achieves competitive performance in real-world sound
recordings.

Index Terms— DCASE2022, Sound event localization and de-
tection, Framework, Test time augmentation, Ensemble

1. INTRODUCTION

Sound event localization and detection (SELD) aims identification
of both the sound event occurance (SED) and the direction of ar-
rival from the sound source (DOA). Since the localization and de-
tection joining task challenge launched in DCASE2019 [1, 2], the
conceptual formulation of the SELD task has been established in
DCASE2021 based on activity-coupled Cartesian direction of ar-
rival (ACCDOA) [3]. Unlike the task has been trained and evalu-
ated on the emulated sound scenes in control up to previous itera-
tions, DCASE2022 engages the real sound scape recordings along
with strong temporal and spatial annotations bringing the task to the
real-world problem [4]. The challenge also inspires the exploitation
of external data to solve the lack of real-world labeled data.

In this report, we introduce the total training framework achiev-
ing the generality of model performance on the real sound record-
ings through utilizing the emulations from the external data sources.
Emulated sound data consist of the synthesis of the individual au-
dio samples corresponding to the task-predefined classes, extracted
from the external datasets [5, 6, 7, 8, 9, 10, 11], along with spa-
tial room impulse responses (SRIR) and spatial ambient noises
(SNoise) [12]. Considering the difference between the size of real
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sound recordings dataset and of emulated sounds, the framework
exploits the down-sized bootstrapping of emulations per every train-
ing epoch. The framework also employees the data augmentation
techniques to train further generalized model.

Additionally, aiming at the increment of robustness in model
prediction, the clustering-based test time rotation-augmentation en-
semble method of ACCDOA is designed in this work. The method
allows the effective aggregation of the predictions from confident
majorities whilst selective rejection of the abnormal candidates.

2. PROPOSED METHOD

In this section, we describe a proposed framework for SELD, and
it consists of feature extraction, data augmentation, external mix,
network, and test time augmentation. The overall process of the
framework is shown in Figure 1.

2.1. Features

We use first-order Ambisonic (FOA) format signals, and multichan-
nel log mel-spectrograms and FOA intensity vectors are used as
frame-wise features. The parameters (sr, nfft, hop, window) =
(24000, 2048, 600, 1200) are set for Short-time Fourier transfor-
mation.

2.2. Data augmentation

We adopt three types of augmentation including each wave and
spectrogram augmentation for guaranteeing the generalized perfor-
mance on the test set. Regarding wave augmentation on the audio
inputs, we adjust the gain, shift the pitch, and apply the band-pass
filter on the audio. Furthermore, we rotate the directions of events in
a sound source as in [13]. The rotation function sets are pre-defined
as 16 patterns to change azimuth and elevation angles of a sound
source. The rotation function sets are the combinations of channel
swapping and channel sign inversion on the X , Y , and Z axis of
FOA inputs. Finally, we use spectrogram augmentation [14], which
maskes time and frequency information after log mel-spectrogram
transformation on the audio inputs.

2.3. External mix

To keep the model fit in real-world scenario contexts while taking
advantage of various audio samples from external datasets, dataset
mixing technique is adopted to consist model training dataset. The
technique balances the size of each dataset on the model training
phase, between the small real recording set and the large emulated
scenarios. The balancing of two different datasets is conducted as
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Figure 1: Proposed framework overview.

follows: the half of the model training dataset consists of the real-
world sound scenarios, where it is maintained to the end of the train-
ing phase. The other half comprises with the scenarios down sam-
pled from the emulated sounds, and the sampling occurs dynami-
cally at the start of the every training epoch.

2.4. Network architecture

Figure 2 presents the process of our SELD architecture consisting
of an encoder, a self-attention pooling, and a decoder used in this
study. First, we adopt the squeeze-and-excitation residual networks
[15] (SE-ResNet), which have recently been applied to audio clas-
sification [16, 17], as the SELD encoder. Our SE-ResNet-34 is the
same original SE-ResNet-34, except we use average pooling instead
of the stride convolution in the second and third blocks. In addition,
to preserve the frame-wise localization information of the input au-
dio, we aggregate frequency dimensions into channel dimensions
using the variant of self-attention pooling [18, 19]. For the SELD
decoder, we employ two bidirectional GRU layers followed by layer
normalization and tangent hyperbolic activation. Then, the SELD
output is obtained by applying two fully-connected layers followed
by tangent hyperbolic activation.

2.5. Test time augmentation

To maximize the generalization ability of models in the real record-
ing test phase, we adopt a test time augmentation (TTA). TTA is
widely used in computer vision to increase the robustness and per-
formance of models [20, 21, 22]. Although they proposed better
augmentation policies and aggregation methods, they are not ap-
propriate to apply on SELD due to the different predicted outputs.
In the specific, the unknown number of events and the presence of
coordinates information make challenging to apply TTA on SELD.

To utilize TTA on SELD, we propose a clustering-based aggre-
gation method to obtain confident predicted outputs and aggregate
them. We take 16 pattern rotation augmentation for test time aug-
mentation, making 16 predicted outputs, that is candidates. To ob-
tain confident aggregated outputs, we use DBSCAN [23] for clus-

Figure 2: Model architecture.

tering candidates, only when the candidates have the same class
and the number of them is over the threshold. The epsilon of DB-
SCAN is the distance calculated by the threshold of unification for
inference in degrees. By exploiting DBSCAN, the outliers of the
candidates can be excluded and it is possible to divide the events
which have the same class but are differently located. After acquir-
ing clusters of candidates, we take an average to aggregate them.
When the number of the aggregated outputs is over three tracks, we
select top-3 outputs depending on the weight which is calculated
by multiplication between the number of candidates per cluster and
their norm. Furthermore, we fit the model on rotated validation set
to maximize TTA effect. Finally, we apply this strategy to cross-
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validation models for the submission of the evaluation dataset.

3. EXPERIMENTS

3.1. Dataset

The proposed method is evaluated on STARSS22 [4]. To synthe-
size emulated sound scenarios from the external data, we use class-
wise audio samples extracted from six external datasets, which are
AudioSet [5], FSD50K [6], DCASE2020 and 2021 SELD datasets
[7, 8], ESC-50 [9], IRMAS [10], and Wearable SELD [11]. W
axis of the ambisonic audio format is extracted for the external data
that originally consisted in multichannel recording format aiming
the SELD task. As the same way in former SELD task challenges,
extracted audio samples are synthesized through SRIR and SNoise
from TAU-SRIR DB [12] emulating the spatial sound environment.

Before synthesizing the external data, we split the external au-
dio samples from each dataset into four folds for the cross vali-
dation. Then, we synthesized two sets for each fold, one keeps the
original class distribution of external samples and the other balances
the distribution via down sampling the larger class population.

At the developmental stage, the model is trained on the real
recording training set and the last external emulation fold while it is
validated and also tested on the dev-test set of the given STARSS22
dataset. On the other hand, two types of cross validating divisions
are additionally set for the evaluation stage, the first is based on
class event-wise stratified split and the other is based on the room-
wise split. Both of the splits consist to have four folds each, and the
corresponding external emulation folds are considered as external
data to be fed the model in training framework.

3.2. Experimental setup

We used the official metrics [2] to evaluate our SELD system. Sim-
ilar to previous DCASE SELD challenges, DCASE 2022 SELD
challenge includes four evaluation metrics: location-dependent
error rate (ER20◦ ), location-dependent F-score (F20◦ ), class-
dependent localization error (LECD), and localization recall metric
(LRCD). In contrast to the previous challenges, macro-average is
used as a class averaging method for ER20◦ .

During the training, we splitted the audio inputs into 5-second
segments with 4-second overlapped. An AdamW optimizer with a
learning rate of 1×10−3 was employed. We calibrated the learning
rate in half if the validation score did not reduce after 25 epochs.
We set a batch size to 128 and total epochs to 200.

Table 1: Experimental results of our systems for the dev-test set.
Ver. # Params. ER20◦ F20◦ LECD LRCD

Baseline 0.60M 0.71 21% 29.30◦ 46%
- w/o Ext. Data - 0.84 16% 43.15◦ 31%
+ w/ Larger Ext. Data - 0.67 35% 18.86◦ 45%

SE-ResNet+GRU 6.04M 0.59 40% 17.52◦ 50%
- w/o Ext. Data - 0.83 17% 36.86◦ 30%
+ w/ Larger Ext. Data - 0.64 44% 17.53◦ 65%

SE-ResNet+GRU 6.04M 0.59 40% 17.52◦ 50%
+ Augmentation - 0.55 46% 15.78◦ 54%
+ External Mix - 0.45 54% 14.53◦ 69%
+ TTA - 0.43 58% 12.86◦ 69%

3.3. Experimental results

In Table 1, we conducted an ablation study to validate the influ-
ence of the proposed framework. The results of the first (Baseline
model) and second (SE-ResNet) blocks show the effect of the exter-
nal dataset on performance. The first row of each block, which uses
dev-train data and FSD50K (Baseline synthesized data), presented
that SE-ResNet significantly outperforms the baseline model; how-
ever, the second row of each block using dev-train only showed poor
performance for both models. In addition, both models showed ad-
ditional performance gains when using the seven external datasets
mentioned in 3.1. In the last block, we found that significant im-
provements were obtained from three components (Augmentation,
External Mix, and TTA). Among them, the external mix method
contributed more to the performance improvement than the other
methods.

3.4. Submission

Table 2 shows the setups of our submitted systems. Submission #1
and #2 are the system trained on development training set with vali-
dated and tested solely via dev-test set. The first system is validated
without considering the TTA while the second system is validated
for all 16-patterns of rotating augmentation. System #3 and #4 are
trained and validated from each cross validation division aforemen-
tioned in Section 3.1, class-wise stratified split and room-wise split
respectively. TTA was considered for validating models from both
systems.

Table 2: Experimental results of our submitted systems.
System # Params. Description

Submission #1 6.04M SE-ResNet+GRU (Aug & Ext. mix)
Submission #2 6.04M SE-ResNet+GRU (Aug & Ext. mix & TTA)

Submission #3 24.16M SE-ResNet+GRU (CV & Aug & Ext. mix & TTA)
Submission #4 24.16M SE-ResNet+GRU (CV & Aug & Ext. mix & TTA)

4. CONCLUSION

In this report, we presented our method for DCASE2022 task 3:
sound event localization and detection. We proposed a frame-
work for SELD which composes of data augmentation, external
mix, and test time augmentation. The augmentations including the
transformation of wave feature, directional rotation, and spectro-
gram augmentation were effective to increase the diversity of sam-
ples. The external mixing technique, which balances the size of the
dataset between real-world and synthetic sounds during the training
phase, contributed to the improvement of performance on the real-
world recordings. Regarding test time augmentation, we designed
a clustering-based test time augmentation, which is appropriate for
SELD task, and it showed a performance gain. Experimental re-
sults demonstrated that the proposed robust framework for SELD
with our SE-ResNet-34 can guarantee the generalized performance
on the real-world recordings even when the train set of real-world
recordings was not enough.

5. ACKNOWLEDGMENT

This research was supported by Brain Korea 21 FOUR. This re-
search was also supported by a Korea TechnoComplex Foundation
Grant (R2112651, R2112652).



Detection and Classification of Acoustic Scenes and Events 2022 Challenge

6. REFERENCES

[1] S. Adavanne, A. Politis, J. Nikunen, and T. Virtanen,
“Sound event localization and detection of overlapping
sources using convolutional recurrent neural networks,”
IEEE Journal of Selected Topics in Signal Processing,
vol. 13, no. 1, pp. 34–48, March 2018. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8567942

[2] A. Politis, A. Mesaros, S. Adavanne, T. Heittola, and
T. Virtanen, “Overview and evaluation of sound event
localization and detection in dcase 2019,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
vol. 29, pp. 684–698, 2020. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/9306885

[3] K. Shimada, Y. Koyama, N. Takahashi, S. Takahashi, and
Y. Mitsufuji, “Accdoa: Activity-coupled cartesian direction of
arrival representation for sound event localization and detec-
tion,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Toronto, Ontario, Canada,
June 2021.

[4] A. Politis, K. Shimada, P. Sudarsanam, S. Adavanne,
D. Krause, Y. Koyama, N. Takahashi, S. Takahashi,
Y. Mitsufuji, and T. Virtanen, “Starss22: A dataset
of spatial recordings of real scenes with spatiotemporal
annotations of sound events,” 2022. [Online]. Available:
https://arxiv.org/abs/2206.01948

[5] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio
set: An ontology and human-labeled dataset for audio events,”
in Proc. IEEE ICASSP 2017, New Orleans, LA, 2017.

[6] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra,
“FSD50K: an open dataset of human-labeled sound events,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 30, pp. 829–852, 2022.

[7] A. Politis, S. Adavanne, and T. Virtanen, “A dataset of
reverberant spatial sound scenes with moving sources for
sound event localization and detection,” in Proceedings
of the Detection and Classification of Acoustic Scenes
and Events 2020 Workshop (DCASE2020), Tokyo, Japan,
November 2020, pp. 165–169. [Online]. Available: https:
//dcase.community/workshop2020/proceedings

[8] A. Politis, S. Adavanne, D. Krause, A. Deleforge, P. Sri-
vastava, and T. Virtanen, “A dataset of dynamic re-
verberant sound scenes with directional interferers for
sound event localization and detection,” in Proceedings of
the 6th Detection and Classification of Acoustic Scenes
and Events 2021 Workshop (DCASE2021), Barcelona,
Spain, November 2021, pp. 125–129. [Online]. Available:
https://dcase.community/workshop2021/proceedings

[9] K. J. Piczak, “ESC: Dataset for Environmental Sound
Classification,” in Proceedings of the 23rd Annual ACM
Conference on Multimedia. ACM Press, pp. 1015–
1018. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2733373.2806390

[10] J. J. Bosch, F. Fuhrmann, and P. Herrera, “IRMAS: a dataset
for instrument recognition in musical audio signals,” Sept.
2014. [Online]. Available: https://doi.org/10.5281/zenodo.
1290750

[11] K. Nagatomo, M. Yasuda, K. Yatabe, S. Saito, and Y. Oikawa,
“Wearable seld dataset: Dataset for sound event localiza-
tion and detection using wearable devices around head,” in
ICASSP 2022-2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2022,
pp. 156–160.

[12] A. Politis, S. Adavanne, and T. Virtanen, “TAU Spatial Room
Impulse Response Database (TAU- SRIR DB),” Apr. 2022.
[Online]. Available: https://doi.org/10.5281/zenodo.6408611

[13] L. Mazzon, Y. Koizumi, M. Yasuda, and N. Harada,
“First order ambisonics domain spatial augmentation for
dnn-based direction of arrival estimation,” arXiv preprint
arXiv:1910.04388, 2019.

[14] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data aug-
mentation method for automatic speech recognition,” arXiv
preprint arXiv:1904.08779, 2019.

[15] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation net-
works,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 7132–7141.

[16] J. H. Yang, N. K. Kim, and H. K. Kim, “Se-resnet with gan-
based data augmentation applied to acoustic scene classifica-
tion,” in DCASE 2018 workshop, 2018.

[17] H. Shim, J. Kim, J. Jung, and H.-j. Yu, “Audio tagging and
deep architectures for acoustic scene classification: Uos sub-
mission for the dcase 2020 challenge,” Proceedings of the
DCASE2020 Challenge, Virtually, pp. 2–4, 2020.

[18] W. Cai, J. Chen, and M. Li, “Exploring the encoding layer and
loss function in end-to-end speaker and language recognition
system,” arXiv preprint arXiv:1804.05160, 2018.

[19] J. S. Chung, J. Huh, S. Mun, M. Lee, H. S. Heo, S. Choe,
C. Ham, S. Jung, B.-J. Lee, and I. Han, “In defence
of metric learning for speaker recognition,” arXiv preprint
arXiv:2003.11982, 2020.

[20] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial
robustness via randomized smoothing,” in International Con-
ference on Machine Learning. PMLR, 2019, pp. 1310–1320.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet clas-
sification with deep convolutional neural networks,” Advances
in neural information processing systems, vol. 25, 2012.

[22] D. Shanmugam, D. Blalock, G. Balakrishnan, and J. Guttag,
“Better aggregation in test-time augmentation,” in Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 1214–1223.

[23] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-
based algorithm for discovering clusters in large spatial
databases with noise.” in kdd, vol. 96, no. 34, 1996, pp. 226–
231.


