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ABSTRACT 

This report proposes a polyphonic sound event detection (SED) 

method for the DCASE 2022 Challenge Task 4-Sound Event De-

tection in Domestic Environments. We use the dataset of DESED 

to train our model, contains strongly labeled synthetic data, large 

unlabeled data, weakly labeled data and strongly labeled real data. 

To perform this task, we propose a DACRNN network for joint 

learning of SED and domain adaptation (DA).We consider the im-

pact of the distribution within a single sound on the generalization 

performance of the model by mitigating the impact of complex 

background noise on event detection and the self-correlation con-

sistency regularization of clip-level sound event classification, 

these make the intra-domain of a single sound smoother; for 

cross-domain adaptation, adversarial learning through feature ex-

traction network with weighted frame-level domain discriminator. 

Experiments on the DCASE 2022 task4 validation dataset and 

public-evaluation dataset demonstrate the effectiveness of the 

techniques used in our system. Specifically, PSDS1 scores of 

0.448 and PSDS2 scores of 0.853 are achieved for validation da-

taset, PSDS1 scores of 0.553 and PSDS2 scores of 0.836 are 

achieved for public-evaluation dataset.  

Index Terms— Domain adaptation, Sound event de-

tection, Adversarial learning, Semi-supervised learning 

 

1. INTRODUCTION 

Compared with tedious sound event accurate labeling in real data, 

it is much easier to collect a certain number of sound event samples 

and background sound. Synthesizing these sound event samples 

and background sound to generate high-quality labeled audio se-

quences for supervised SED is sensible. 

In the Challenge of Detection and Classification of Acoustic 

Scenes and Events (DCASE), supervised SED methods were 

tested both on synthetic and real-life audio datasets. The results 

demonstrated that sound event detection in a realistic setting was 

difficult. Undoubtedly, SED models trained using synthetic se-

quences perform robust less under real scenarios due to the statis-

tical distribution mismatch between synthetic and real audio data. 

To overcome the distribution mismatch, several semi-supervised 

learning approaches were proposed. 

However, semi-supervised SED model generalization is in-

adequate for fitting the gap of distribution mismatch between syn-

thetic and real audio data. In domain adaptation, the space of syn-

thetic and real audio datasets can be treated as source and target 

domain respectively. The objective is transferring SED models 

trained on source domain to target domain. 

 

2. PROPOSED METHOD 

In this report, we propose an end-to-end domain adaptation 

method for robust SED under real scenarios. We employ a convo-

lutional recurrent neural network (CRNN) as the backbone net-

work for sound event detection. We propose a DACRNN network 

for joint learning of SED and domain adaptation (DA). We con-

sider the impact of the distribution within a single sound on the 

generalization performance of the model by mitigating the impact 

of complex background noise on event detection and the self-cor-

relation consistency regularization of clip-level sound event clas-

sification, these make the intra-domain of a single sound smoother. 

For cross-domain adaptation, adversarial learning through feature 

extraction network with weighted frame-level domain discrimina-

tor. Moreover, mixup and SpecAugment are applied in our system. 

 

2.1. Network architecture 

Convolutional recurrent neural network, which consists of several 

cascaded convolutional layers and gated recurrent units, is the 

representative model for sound event detection. The overall 

framework is shown in Figure 1. We employ a CRNN with 13 

convolutional layers and 2 bidirectional gated recurrent units (Bi-

GRU) as backbone feature extraction network. We use two types 

CNN blocks. In the first block (low-rise CNN Block), we use a 

layer normalization (LN) operation to replace commonly used 

batch normalization (BN) operation in the early stage of CRNN. 

In the second block (high-rise CNN Block), a shortcut is added 

between the first and last ReLU. 

 

2.2. Self-correlation consistency regularization 

In the previous sound event detection methods based on CRNN, 

researchers hope to improve the performance of sound event de-

tection by combining the advantages of CNN and RNN in describ-

ing the local features and sequence features of samples. However, 

the CRNN sound event detection model trained by minimizing the 

classification cross entropy loss function in an end-to-end manner 

does not improve the insufficient ability of CNN structure to ex-

tract audio context information. 

In order to overcome the shortcoming of CRNN sound event 

detection method, we propose an audio tag consistency con-

strained sound event detection method. The purpose method is to 

use CRNN network to improve the representation ability of CNN 

structure to audio sample context information by adding audio tag 

consistency constraints. 
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2.3. Weighted frame-level domain discriminator 

Sound event detection is a frame level classification task. There-

fore, the domain adaptation task of sound event detection should 

also act on frame level features. However, these frame level fea-

tures are difficult to ensure the overall transfer adaptation of 

CRNN network to audio. How to introduce time structure infor-

mation into the domain adaptation of frame level features is a 

problem we should consider. 

 

𝐷𝐴𝑙𝑜𝑠𝑠−𝑤 =
1

𝑇
∑ (𝑊𝑡𝐵𝐶𝐸(𝑓𝑡, 𝑑𝑡))

𝑇

𝑡=1
                 (1) 

 

𝑊𝑡 = |𝑦𝑡
𝑠𝑡𝑢 − 𝑦𝑡

𝑡𝑒𝑎|2                                (2) 

 

𝑦
𝑡
𝑠𝑡𝑢 and 𝑦

𝑡
𝑡𝑒𝑎 represent the frame level output of student model 

and teacher model respectively. In other words, we use the aver-

age teacher model to adaptively weight the adversarial domain 

discriminator. 

 

2.4. Data augmentation 

Three data augmentations are applied in our system, namely ran-

dom noise, spec-augmentation [2] and mixup [3]. 

In random noise, Gaussian noise is added to the spectrum as 

a small disturbance. Moreover, spectrum and noise spectrum are 

randomly send to teacher model and student model. 

In mixup, all data is used to generate interpolated data. For 

weak-labeled and unlabeled clip, we use post processed teacher 

model prediction to generate interpolated label. 

 

2.5. Post process 

In model training, binarization, class-wise median filtering and 

tagging embedding are used in our system. 

Binarization is used to teacher model output to get discrete 

prediction. 

In Class-wise median filtering, we calculate the duration of 

each class in synthetic dataset to determine the window length of 

the median filter of each class. 

In tagging embedding, we use audio tagging to adjust sound 

even detection. Binarization is also used on audio tagging. 

 

𝑝𝑡𝑎𝑔
′ = {

0 ，𝑖𝑓 𝑝𝑡𝑎𝑔 ≥ 0.5     

1 ,           𝑒𝑙𝑠𝑒               
                        (3) 

 

𝑝𝑠𝑒𝑑
′ = 𝑝𝑠𝑒𝑑 ⊙ 𝑝𝑡𝑎𝑔

′                                 (4) 

 

2.6. Temperature process 

The concept of temperature parameter T in sound event detection 

was first proposed by [4], which is used to soften the softmax out-

put in Knowledge distillation field. In the field of sound event de-

tection, temperature parameter T in the sigmoid function to soften 

the detection output only during model inference stage. 

 

   𝑦𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑖 𝑇⁄ ) =
1

1+exp (−𝑧𝑖 𝑇⁄ )
                            (5) 

 

2.7. Utilizing weak prediction 

By converting the sound event detection model into an audio tag 

model and using weak predictions and sets timestamp equal to the 

entire duration of the audio clip [5] has been proved to be benefi-

cial to scenario 2 for PSDS2 score. 

Different weak supervision pooling methods have slight dif-

ferences in the performance of SED model. We found that using 

att pooling in the training stage and liner softmax pooling in the 

test inference stage can better transform SED model into audio 

tagging model. 

 

3. EXPERIMENTS 

All experiments are conducted on the DCASE 2022 domestic en-

vironment sound event detection (DESED) dataset, including 

alarm/bell/ringing, blender, cat, dishes, dog, electric 

shaver/toothbrush, frying, running water, speech and vacuum 

cleaner. The dataset includes 10000 synthetic audio clips and 

19153 real audio chips in total. The synthetic audio clips are gen-

erated with Scaper. The real audio clips are extracted from Audi-

oset, which contains 1576 weak labeled audio clips, 14388 unla-

beled audio clips and 3189 strongly labeled audio clips.  

In our experiments, we use the original audio sampling rate 

44100HZ, and mel-spectrogram features are used as the basic fea-

tures for sound event detection. Each audio clip in the dataset is 

transformed using fast Fourier transform with a 5646 points Han-

ning window and 707 hop length. Then, a mel filter-bank with 128 

bandpass filters is applied to obtain the mel-spectrogram feature 

of the clip. As a result, a 10 second audio clip is converted into a 

(624,128) two-dimensional spectrogram. During training process, 

we use Adam to optimize all the loss functions of our approach, 
with a maximum learning rate of 0.002 for SED model and 0.001 

for discriminator, and a learning rate rampup during the first 20 

epochs. 

 

3.1. Experimental results 

In this section, we conduct experiments on validation set and pub-

lic evaluation set to verify the effectiveness of our method. 

Table 1 show the class wise metrics on all categories.   The 

overall F1 scores of our model achieve 0.585 and 0.629 for vali-

dation dataset and public-evaluation dataset. The overall ER 

scores of our model achieve 0.76 and 0.66 for validation dataset 

and public-evaluation dataset. 

Table 2 show the PSDS score and the influence about model 

ensemble. Our model achieve 0.421 and 0.521 PSDS1 score for 

validation dataset and public-evaluation dataset in the case of sin-

gle model. Also as 0.840 and 0.738 PSDS2 score. And we can 

clearly see that model integration can effectively improve the de-

tection performance. 
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Figure 1: Framework of our SED system. 

 

Table 1: SED performances of our model. 

 validation set public-evaluation set 

 F1 P R ER Del Ins F1 P R ER Del Ins 

alarm 0.513 0.596 0.450 0.85 0.55 0.30 0.631 0.712 0.566 0.66 0.43 0.23 

blender 0.636 0.683 0.596 0.68 0.40 0.28 0.658 0.718 0.607 0.63 0.39 0.24 

cat 0.555 0.596 0.519 0.83 0.48 0.35 0.827 0.847 0.808 0.34 0.19 0.15 

dishes 0.387 0.468 0.329 1.04 0.67 0.37 0.463 0.584 0.383 0.89 0.62 0.27 

dog 0.381 0.424 0.346 1.12 0.65 0.47 0.531 0.590 0.483 0.85 0.52 0.34 

electric 0.800 0.833 0.769 0.38 0.23 0.15 0.598 0.724 0.509 0.69 0.49 0.19 

frying 0.612 0.629 0.596 0.76 0.40 0.35 0.728 0.713 0.744 0.56 0.26 0.30 

running water 0.520 0.571 0.477 0.88 0.52 0.36 0.441 0.574 0.358 0.91 0.64 0.27 

speech 0.604 0.629 0.580 0.76 0.42 0.34 0.665 0.708 0.627 0.63 0.37 0.26 

vacuum 0.841 0.881 0.804 0.30 0.20 0.11 0.753 0.817 0.698 0.46 0.30 0.16 

average 0.585 0.631 0.547 0.76 0.45 0.31 0.630 0.699 0.578 0.662 0.421 0.241 

 

Table 2: PSDS score for our submitted system. 

 PSDS1 PSDS2 

model 

count 

validation  public-

evaluation  

validation  public-

evaluation  

1 0.421 0.521 0.840 0.738 

3 0.443 0.546 0.853 0.836 

4 0.448 0.553 \ \ 
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