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ABSTRACT

In this report, we describe our submissions for the task 4 of Detec-
tion and Classification of Acoustic Scenes and Events (DCASE)
2022 Challenge: Sound Event Detection in Domestic Environ-
ments. Our methods are mainly based on two types of deep learning
models: Convolutional Recurrent Neural Network with selective
kernel convolution (SK-CRNN) and frequency dynamic convolu-
tion (FDY-CRNN). In order to prevent overfitting, we adopt data
augmentation using mixup strategy, FilterAugment, Interpolation
Consistency Training (ICT) and Shift Consistency Training (SCT).
Besides, we utilize external data and pretrained model to further
improve performance, and try an ensemble of multiple subsystems
to enhance the generalization capability of our system. Our final
systems achieve a PSDS1/PSDS2 score of 0.5331/0.8569 on devel-
opment dataset.

Index Terms— DCASE, sound event detection, mean teacher,
semi-supervised learning

1. INTRODUCTION

In task 4 of DCASE 2022, our purpose is to predict not only the
the event class but also the event time localization. This task is
dedicated to sound events detection (SED). In this task, 10 domestic
sound events are considered as the target events. The prediction
results of detection are finally evaluated with poly-phonic sound
event detection scores (PSDS) [1].

In this report, we propose the sound event detection system
based on the offical baseline. The baseline utilizes the Convolu-
tional Recurrent Neural Network (CRNN) as the model architecture
and apply Mean Teacher (MT) [2]. In our proposed approach, there
are four main improvements. Firstly, we apply several data aug-
mentation operations such as ICT [3], SCT [4], FilterAugment [5]
on both time and frequency axises of the spectrogram. Secondly, we
utilize the SK-CRNN [6] and FDY-CRNN [7] as the model architec-
ture instead of CRNN. These two models have adaptive kernels and
provide more flexibility. Thirdly, we investigate the relationship be-
tween the labels of AudioSet [8] and the target 10 acoustic events.
We add some strongly labeled and weakly labeled data from Au-
dioSet using the mapping relationship. Fourthly, pretrained models
play a role of embedding which is concatenated to the model. Audio
Spectrogram Transformer (AST) [9] is a convolution-free, purely
attention-based model while PANN [10] is a CNN based model. We
make some improvements to the convolution structure in PANN and
achieve better results. Two pretrained models both achieve good
performance on the audio classification task. By the way, the latter
two improvements are the main focus of the DCASE 2022 task 4.

2. METHODS

2.1. Data preprocessing

All audio are resampled to 16kHz and down sampled to mono. We
use log-mel energies as acoustic feature and extract 128 dimen-
sional log-mel spectrogram using 2048 STFT window with a hop
length of 256. In order to deal with the variable lengths of audio,
we set a maximum padding length. All shorter feature will be zero-
padding to the padding length. When it is longer, it will be trun-
cated. In this work, maximum padding length is set to 626.

2.2. Data augmentation

We apply frame shift, time mask, frequency mask, gaussian noise
and mixup these five common operations in our system to increase
the robustness. What is more, we also apply three other data aug-
mentation methods called FilterAugment, ICT and SCT.

We apply the FilterAugment on the input spectrogram to mimic
complex acoustic conditions. More implement details are available
in [5]. ICT encourages the prediction at an interpolation of un-
labeled data points to be consistent with the interpolation of the
prediction at these data points. SCT encourages the prediction
of time-shifted and frequency-shifted inputs to be consistent with
time-shifted and frequency-shifted prediction. Thus, the loss func-
tion during training can be indicated in follow formula. The base-
line loss contains binary cross-entropy (BCE) and mean squared
error (MSE). In this system, ICT and SCT introduce additional loss
function and they are also added into the total loss. Sθ and Tθ′ de-
note student and teacher model, di and dj denote data points, and θ
is randomly sampled from a Beta distribution. wf , sf and st denote
clip-level outputs with frequency shift, frame-level outputs with fre-
quency shift, and frame-level outputs with time shift, respectively.

Lbaseline = Lw,BCE + Ls,BCE + w(t)(Lw,MSE + Ls,MSE)

w(t) = exp[−5(1− t2

T
)]

LICT =MSE(Sθ(λdi+(1−λ)dj), λTθ′(di)+(1−λ)Tθ′(dj))
LSCT = Lwf,BCE + Lsf,BCE + Lst,BCE + w(t)(Lst,MSE)

Loss = Lbaseline + LICT + LSCT

2.3. Mean teacher

We utilize Mean-Teacher model [2] for semi-supervised learning.
It is a combination of two models: a student model and a teacher
model, having the same architecture. The student model is the one
used at inference while the goal of the teacher is to help the student
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Table 1: Description for submitted system

system external data pretrained model weak prediction model count PSDS1 PSDS2
1 8 0.4743 0.6917
2 X X 40 0.5206 0.7709
3 X X 16 0.5331 0.7625
4 X X X 16 0.0714 0.8569

model during training. The teacher’s weights are the exponential
average of the student model’s weights. More details are available
in [11].

2.4. Neural network

The selective kernel (SK) network [12] is a dynamic selection
mechanism in CNN that allows each neuron to adaptively adjust
its receptive field size based on multiple scales of input informa-
tion. We replace the regular convolution layer in the official baseline
(CRNN model) with selective kernel unit. We call this model SK-
CRNN. The architecture of SK-CRNN is similar to that in [6]. In
order to improve physical inconsistency in regular convolution layer
on SED task, [7] propose frequency dynamic convolution which ap-
plies kernel that adapts to frequency components of input. We also
utilize this architecture (FDY-CRNN) as our SED model.

The CNN part is composed of 7 convolution layers with [32, 64,
128, 256, 256, 256, 256] filters. Each convolution layer is followed
by batch normalization, ReLU, dropout and avg-pooling. The avg-
pooling kernel is [[2, 2], [2, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1,
2]]. And a bi-directional gated recurrent unit (Bi-GRU) is used to
capture temporal context. Finally, two dense layers are applied to
output prediction scores for each class. Moreover, this is a weakly
labeled SED task, we need to aggregate the frame-level probabilities
into a clip-level probability. Attention mechanism is widely used in
SED models [13, 14, 15]. Some handcraft pooling function also
achieve good performance [16, 17]. We use attention and linear
function in final pooling layer.

2.5. External data

DCASE provides 3470 AudioSet strongly labeled clips with the tar-
get 10 events. We find out a mapping relationship between the Au-
dioSet 527 categories and the target 10 categories. We statistic the
mapping relationship for each time stamps labeling in 3470 clips
and calculate the mapping rate for each 527 categories. First, we
set 60% as the mapping rate threshold. Only mapping relationships
with mapping rates larger than 60% can be filtered out. Second,
we only filter out mapping relationships which have reasonable se-
mantic relationships. There are 29 relationships left through these
two guidelines. With these mapping relationships, we select the
strongly labeled data in AudioSet which contains 29 original acous-
tic categories. As there are too many clips labeled with “Speech”,
we remove those whose label is only “Speech” to ensure the balance
between acoustic events. There are external 5167 strongly labeled
clips. They can act not only the role of strongly labeled data, but
also the role of weakly labeled data.

2.6. Pretrained model

Convolutional neural network is popular in audio related tasks for
spectrograms. PANN model [10] achieves the state-of-the-art per-
formance (0.439 mAP on AudioSet) in CNN based architecture. We
replace convolution in PANN with separated unidirectional con-
volution to improve performance and achieve 0.460 mAP on Au-
dioSet. Then we add this model to our SED system and utilize a
trainable RNN encoder to encode features of pretrained model to
a fixed dim output. This output is regard as clip-level features and
then concatenated with CNN features from SED model. Besides,
AST [9] is the first convolution-free, purely attention-based model
for audio classification. We also add the pretrained AST model to
SED system in the same way.

3. EXPERIMENTS

3.1. Experiment setup

There are 1578 weakly labeled clips, 14412 unlabeled clips, 10000
synthetic strongly labeled clips and 8637 (3470+5167) real strongly
labeled clips used in system development. And the input for our
SED systems consists of the spectrogram feature and the embedding
from pretrained model. Then, the SED system is trained with differ-
ent kinds of data augmentation methods (including frame shift, time
mask, frequency mask, mix-up, gaussian noise, FilterAugment, ICT
and SCT) and model architectures (including SK-CRNN and FDY-
CRNN). We train the whole system for 200 epochs and the learning
rate warms up in the first 50 epochs with the initial learning rate of
0.001. The batch size is set to 64.

3.2. Evaluation metric

The primary metric is poly-phonic sound event detection scores [1].
This metric is based on the intersection between events. PSDS val-
ues are computed using 50 operating points (linearly distributed
from 0.01 to 0.99). In order to test SED system for different scenar-
ios, we set two different PSDS parameters. In scenario1, the system
needs to react fast upon an event detection. The localization of the
sound event is important. In scenario2, the system must avoid con-
fusing between classes but the reaction time is less crucial than in
the first scenario. More details are available in [18].

3.3. Model ensemble and submissions

The systems we submitted are shown in Table 1. The four systems
adopt the model fusion strategy. System1 is trained without exter-
nal data and pretrained model. System2 and system3 are ensem-
bled average of 40 models and 16 models respectively. Compared
with system3, system4 utilize weak prediction method [19] to ob-
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tain higher PSDS2 score. The best PSDS1 score is 0.4539, and the
best PSDS2 score is 0.7879.

4. CONCLUSION

In this report, we present our methods used in the task 4 of DCASE
2022 Challenge. We adopt FilterAug, mixup, ICT and SCT for data
augmentation. We apply two types of deep learning model includ-
ing SK-CRNN and FDY-CRNN. Besides, we add external data and
pretrained model to further improve performance. Our final systems
achieve a PSDS1/PSDS2 score of 0.5331/0.8569 on development
dataset.
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