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ABSTRACT 

This report describes our submitted system for DCASE2022 

challenge task2 (Unsupervised Anomalous Sound Detection for 

Machine Condition Monitoring Applying Domain Generalization 

Techniques) [1] in detail. The system is composed of two modules, 

a hierarchical recurrent variational autoencoder and a self-

supervised classifier, and the final score is a weighted average 

over the normalized results of the two systems. The anomaly 

scores are all calculated in the latent/embedding space. 

Index Terms— DCASE, unsupervised anomalous 

sound detection, representation learning 

1. INTRODUCTION 

The DCASE2022-task2 [1][2][3] is an unsupervised anomalous 

sound detection competition. Participants are expected to design a 

system to discriminate between sounds emitted by normal 

machines and unhealth machines. The main challenges lie in three 

aspects: (a) Only normal sounds are provided in the training stage, 

putting the task in an unsupervised manner; (b) Half of the test data 

are recorded in different acoustic conditions from training data, so 

the system faces a domain shift challenge; (c) In the test stage, the 

domain information of the test data is not given, which is different 

from DCASE2021-task2 [4], and significantly more difficult. 

In DCASE2021-task2[4], models used by the participating 

teams [5][6][7][8][9][10] include self-supervised classifiers, 

autoencoders or variational autoencoders (VAE), and normalizing 

flows, etc. In the classifier-based methods, the output of the 

Softmax layer or the embedding distances are usually calculated 

as anomaly scores. Reconstruction errors are used in autoencoders. 

The normalizing flows are directly used as density estimators. 

Many participating teams used ensemble systems to balance the 

models’ preferences to further improve the performance. 

Our proposed system is an ensemble of two modules, 

including a hierarchical recurrent variational autoencoder, 

abbreviated as HRVAE, and a classifier. HRVAE is trained in two 

stages to extract more meaningful embeddings of the machine 

sounds. In both modules, the anomaly detection is conducted in 

the embedding space. The final score is a weighted sum of the 

normalized scores from the two modules.  

2. METHODS 

 

 

Figure 1: The architecture of HRVAE. 

2.1. HRVAE-based method 

The VAE [11] is a generative model assuming that the high-

dimensional data can be generated from the low-dimensional 

latent variables. The aim of VAE is to learn the latent 

representation and generate data based on the learned 

representation, using a pair of encoder and decoder. The encoder 

inferences the latent variables 𝒛 of the given data 𝒙, and the 

decoder reconstructs the data 𝒙 based on 𝒛. VAE assumes that 

the latent variables follow a simple prior distribution 𝑝(𝒛) in the 

latent space, usually  𝒛 ∼ 𝒩(𝟎, 𝑰) . Given the conditional 

likelihood 𝑝𝜃(𝒙|𝒛), which is usually complex proper Gaussian 

distribution when the data is short time Fourier transform (STFT) 

coefficients 𝑝𝜃(𝒙|𝒛) = 𝒩𝑐(𝒙; 𝜇(𝒛), 𝜮(𝒛)) , VAE uses a  

multivariate Gaussian distribution as the variational distribution 

𝑞𝜙(𝒛|𝒙) = 𝒩(𝒛; 𝜇(𝒙), 𝜮(𝒙))  to approximate the posterior 

distribution, and the encoder and decoder are jointly trained to 

maximize the evidence lower bound (ELBO) as  

     ℒ𝐸𝐿𝐵𝑂 = 𝔼𝒛∼𝑞𝜙(𝒛|𝒙)[𝑙𝑜𝑔𝑝(𝒙|𝒛)] − 𝐷𝐾𝐿 (𝑞𝜙(𝒛|𝒙)‖𝑝(𝒛)), (1) 

where 𝐷𝐾𝐿 means the Kullback-Leibler (KL) divergence. 

Recurrent variational autoencoder (RVAE) [12] induces a 

posterior dynamic over the latent variables, and can better model 

the temporal relationships of both input features and latent 
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variables. The proposed HRVAE has a two-layer hierarchy, which 

adds a second stochastic layer on the RVAE to extract latent 

variables on different scales, depicted as 𝒛(1) and 𝒛(2) in Fig. 1. 

The input feature is a T-frame STFT spectrogram, and then the first 

layer of HRVAE extracts the latent variables 𝒛1:𝑇
(1)

 for each single 

frame, and the second layer extracts the latent variable 𝒛(2) for 

the whole T-frame segment. HRVAE introduces a conditional 

prior distribution over the latent variables 𝑝𝜃(𝒛1:𝑇
(1)

|𝒛(2)) , and 

assumes that the second layer latent variables 𝒛(2) still follow a 

standard normal distribution. 

The loss of HRVAE can be described as 

              ℒ𝐸𝐿𝐵𝑂 = 𝔼
𝒛1:𝑇

(1)
,𝒛(2)∼𝑞𝜙

(1)
,𝑞𝜙

(2) [𝑙𝑜𝑔𝑝(𝒙|𝒛1:𝑇
(1)

, 𝒛(2))] 

−𝐷𝐾𝐿 (𝑞𝜙
(1)

(𝒛1:𝑇
(1)

|𝒙)‖ 𝑝(𝒛1:𝑇
(1)

|𝒛(2))) 

    −𝐷𝐾𝐿 (𝑞𝜙
(2)

(𝒛(2)|𝒙, 𝒛1:𝑇
(1)

)‖ 𝑝(𝒛(2))),          (2) 

where 𝑞𝜙
(1)

 and 𝑞𝜙
(2)

 denotes the posterior distribution of 

𝒛1:𝑇
(1)

 and 𝒛(2), respectively. 

To force the HRVAE to learn the features of normal machines 

instead of other varying factors including environmental noises, 

the HRVAE is then re-trained on an auxiliary classification task to 

discriminate the auxiliary information, for example the machine 

IDs and the operation velocities. The loss is modified as 

   ℒ = ℒ𝐸𝐿𝐵𝑂 + 𝛼ℒ𝑎𝑢𝑥𝑖 ,                (3) 
where 𝛼 is a hyperparameter. 

The RVAE encoder and decoder structures are the same as 

those in [12], with the output dimension of 128 for all the layers 

except the output layer of the encoder and the decoder. The second 

layer encoder is a network with two multi-head attention layers 

[13]. The number of attention heads is 2. The classification task is 

trained with an ArcFace loss [14]. 

In the test stage, the anomaly score is calculated based on the 

mean of cosine distances of the K-nearest-neighbours (KNN) in 

the latent space. The number of neighbours K is set to 1. 

2.2. Classifier-based method 

STgram-MFN[15] is used as the classifier backbone in our system, 

which combines the information in the raw wav signals with that 

in the log-Mel spectrograms. The detailed structure of the STgram-

MFN is the same as that in [15]. Two ArcFace losses are applied 

in training the classifier. One is to classify each section, and the 

other is to distinguish different auxiliary information. The output 

before the ArcFace layers are seen as embeddings.  

During the testing stage, the cosine distances between the test 

data embedding and the centres of different sub-classes in a single 

section are calculated, and the negative of the minimum distance 

is used as the anomaly score. 

3. EXPERIMENTS AND RESULTS 

3.1. Training Configurations 

All audios are used at a sampling rate of 16 kHz. When training 

HRVAE, 50-frame STFT spectrograms are used as the input. The 

FFT length is 1024, and the hop length is 512, so the input feature 

has a size of 50×513. The latent vector dimension is 16 for 𝒛(1), 

and 64 for 𝒛(2).  

For STgram-MFN, the STFT configuration is the same as 

that for HRVAE, and the number of Mel-frequency bins is 128. 

The whole spectrogram is fed into the network, and each input 

feature of a 10 s long audio clip has a size of 313×128. 

HRVAE is trained for 500 epochs with an early stopping 

patience of 10, and a batch size of 256. The hyperparameter  𝛼 is 

set to 10. 

The STgram-MFN is trained for 200 epochs with an early 

stopping patience of 10, and a batch size of 64. To avoid 

overfitting and improve the model’s performance, Mixup [16] is 

used in training with the two ArcFace losses. 

We train a separate model on each machine type, using all 6 

sections in a machine type. 

The four submitted systems use different weights on the 

scores of two modules. 

3.2. Results 

Table 1 shows the scores of the best submitted system compared 

with two baseline models on the development dataset, including 

area under the receiver operating characteristic curve (AUC) and 

partial-AUC (pAUC) scores. The scores of each machine type are 

harmonic mean over test data from section_00, section_01, and 

section_02. On machine type ToyCar, ToyTrain, Slider, Gearbox, 

and Fan, our proposed system achieves significantly better 

performance over both challenge baselines. The performance on 

Bearing and Valve is worse than Baseline2. Note that the 

performance gap between the source domain and the target domain 

is not very large, and is even reversed on Bearing and Valve.  

4. CONCLUSIONS 

A system combining two anomaly detection modules, HRVAE 

and a STgram-MFN, is proposed. The anomaly scores are 

calculated in the embedding space based on distances. The 

proposed system achieves significantly better average 

performance over the baseline models.  
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Table 1: Performances on the development dataset of baseline systems and the proposed system. Total score for each machine type 

means the harmonic mean over AUC (source), AUC (target), and pAUC. ‘All’ means the harmonic mean over these three scores from all 

the machine types. 

System Score ToyCar ToyTrain Slider Gearbox Bearing Valve Fan All 

Baseline1 

(AE) 

AUC(source)(%) 90.41 76.32 77.95 68.93 54.42 52.01 78.59 

52.61 

AUC(target) (%) 34.81 23.35 47.67 62.64 58.38 49.46 47.18 

pAUC(%) 52.74 50.48 55.78 58.49 51.98 50.36 57.52 

Total(%) 51.06 39.61 57.99 63.07 54.80 50.58 58.47 

Baseline2 

(MobileNetV2) 

AUC(source)(%) 59.12 57.26 65.15 69.21 60.58 67.09 70.75 

55.94 

AUC(target) (%) 51.96 45.90 38.23 56.19 59.94 57.22 48.22 

pAUC(%) 52.27 51.52 54.67 56.03 57.14 62.42 56.90 

Total(%) 54.26 51.14 50.17 59.89 59.18 61.98 57.20 

Best submitted 

system 

(system_1) 

AUC(source)(%) 81.72 70.07 84.77 72.32 53.37 58.63 60.01 

63.25 

AUC(target) (%) 70.83 61.04 77.45 68.66 61.60 66.90 59.95 

pAUC(%) 55.98 53.96 64.49 60.50 55.01 57.83 56.22 

Total(%) 67.85 61.12 74.60 66.78 56.44 58.67 60.85 

       


