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ABSTRACT

Polyphonic sound event localization and detection (SELD) aims at
detecting types of sound events with corresponding temporal activ-
ities and spatial locations. In DCASE 2022 Task 3, data types tran-
sition from computationally generated spatial recordings to record-
ings of real-sound scenes. Our system submitted to the DCASE
2022 Task 3 is based on our previous proposed Event-Independent
eNetwork V2 (EINV2) and novel data augmentation method. To de-
tect different sound events of the same type with different locations,
our method employs EINV2, combining a track-wise output format,
permutation-invariant training, and soft-parameter sharing. EINV2
is also extended using conformer structures to learn local and global
patterns. To improve the generalization ability of the model, we use
a data augmentation approach containing several data augmentation
chains, which are composed of random combinations of several dif-
ferent data augmentation operations. To mitigate the lack of the
real-scene recordings in the development dataset and the presence
of sound events being unbalanced, we exploit FSD50K, AudioSet,
and TAU Spatial Room Impulse Response Database (TAU-SRIR
DB) to generate simulated datasets for training. The results show
that our system is improved over the baseline system on the dev-set-
test of Sony-TAu Realistic Spatial Soundscapes 2022 (STARSS22).

Index Terms— Sound event localization and detection, real
spatial sound scenes, Event-Independent Network, data augmenta-
tion chains, simulated datatasets

1. INTRODUCTION

Sound event localization and detection (SELD) contains two sub-
tasks, sound event detection (SED) and direction-of-arrival (DoA)
estimation. SED aims at detecting types of sound and their cor-
responding temporal activities. Whereas DoA estimation predicts
spatial trajectories of different sound sources. SELD characterizes
sound sources in a spatial-temporal manner that can be used in a
wide range of applications, such as robot auditory, surveillance, and
smart home.

SELD has received broad attention recently. Adavanne et al. [1]
proposed a polyphonic SELD work using an end-to-end network,
SELDnet, which was utilized for a joint task of SED and regression-

based DoA estimation. SELD was then introduced in the Task 3 of
the Detection and Classification of Acoustics Scenes and Events
(DCASE) 2019 Challenge for the first time, which uses the TAU
Spatial Sound Events 2019 dataset [2]. Most datasets of spatial
sound events are computationally simulated, and these recordings
are generated by convolving randomly chosen sound event exam-
ples with a corresponding random real-life spatial room impulse re-
sponse (SRIR) to spatially place them at a given position [2–4].
Moreover, stronger reverberation, diversity of environment, dy-
namic scenes with both moving and static sound sources, ambient
noise, sound events with the same type, and unknown directional
interfering events out of the target classes were added into datasets
to complicate the SELD task and brought each iteration of Task 3 of
DCASE Challenge closer to real conditions. In 2022, the challenge
task transitions from computationally simulated spatial recordings
to real spatial sound scenes recordings. Sony-TAu Realistic Spa-
tial Soundscapes 2022 (STARSS22) dataset is released to serve as
the development and evaluation dataset of DCASE2022 Task 3 this
year, which are manually annotated [5].

SELDnet has the limitation that it is unable to detect sound
events of the same type but with different locations [1]. Event in-
dependent network (EIN) with track-wise output format was pro-
posed to tackle this problem [6–8]. In EIN, there are several
event-independent tracks, which means the prediction on each track
can be of any event type. The number of tracks needs to be
pre-determined according to the maximum number of overlapping
events. EINV2 utilizes multi-head self-attention (MHSA) and soft
parameter-sharing to achieve better performance compared with
SELDnet [7].

In practical applications, training set cannot cover all actual
instances from different spatial and sound environments, and mis-
matches between the training set and test set are common. To im-
prove the generalization of the model, a novel data-augmentation
method is used [8, 9]. The data-augmentation method is character-
ized by utilizing several augmentation operations. These data aug-
mentation operations are sampled, layered, and combined randomly
to produce a high diversity of augmented features.

In this study, our model exploits EINV2, combining a track-
wise-output format, permutation-invariant training (PIT), and soft
parameter-sharing (PS). The Conformer structure is utilized to ex-
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tend EINV2 to learn local and global patterns. The data augmenta-
tion method is composed of several augmentation operations. These
data augmentation operations are sampled and layered randomly
to be combined to several data augmentation chains [8]. Exter-
nal data is allowed in this challenge. We generate simulated data
by convolving stochastically chosen samples of sound event from
AudioSet [10] and FSD50K [11] with measured SRIRs from TAU
Spatial Room Impulse Responses Database1 (TAU-SRIR DB). The
experimental results show the proposed model with the novel data
augmentation methods, which was trained in our simulated data,
outperformed the DCASE2022 challenge Task 3 baseline model
which was trained in official synthetic SELD mixtures2.

2. THE METHOD

2.1. Input features

In this work, log-mel spectrograms are first used for SED, while
IV in log-mel space is used for DoA estimation [6, 8, 12, 13]. FOA
includes four channels of signals, i.e., omni-directional channel w,
and three directional channels x, y, and z. Log-mel spectrograms
are computed from the short-time Fourier transform spectrograms
of four-channel signals, and intensity vectors are computed from
cross-correlation of w with x, y and z in log-mel space. These fea-
tures are directly calculated online using a 1-D convolutional layer,
which supports data augmentation on raw waveform.

2.2. Network Architecture

The trackwise output format was introduced in our previous works
[6–8]. It can be defined as

YTrackwise ={
(ySED, yDoA) | ySED ∈ OM×K

S , yDoA ∈ RM×3
} (1)

where M is the number of tracks, K is the number of sound-event
types, OM×K

S is one hot encoding of K classes, S is the set of sound
events, and the number of dimensions of Cartesian coordinates is 3.

The number of tracks needs to be pre-determined according to
the maximum number of overlapping events. Each track can only
detect a sound event and a corresponding location. While a model
with track-wise output format is trained, sound events are not al-
ways predicted in a fixed track. It may result in a problem that sound
events predicted in a track may not be aligned to its ground truth.
This may be due to the track permutation problem. Permutation-
invariant training (PIT) can be utilized for the problem. The PIT
loss is defined as

LPIT (t) =

min
α∈P(t)

∑
M

{λ · ℓSED(t, α) + (1− λ) · ℓDoA(t, α)} (2)

where α ∈ P(t) indicates one of the possible permutations and λ
is a weight between SED loss and DoA loss. ℓSED is binary cross
entropy loss for the SED task, and ℓDoA is mean square error for
the DoA task. The lowest loss will be chosen by finding a possible
permutation, and the back-propagation is then performed.

1https://doi.org/10.5281/zenodo.6408611
2https://doi.org/10.5281/zenodo.6406873
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Figure 1: The architecture of the SELD network, which is a Conv-
Conformer network. Dashed-yellow is the SED task. Dashed-blue
is the DoA estimation task. The green boxes indicate soft connec-
tions between SED and DoA estimation.

From an multi-task learning (MTL) perspective, joint SELD
learning can be mutually beneficial. Hard PS and soft PS are two
typical methods to implement MTL. Hard PS means subtasks use
the same feature layers, while soft PS means subtasks use their own
feature layers with connections existing among those feature layers.
In [7], experimental results show that soft PS using cross-stitch is
more effective.

EINV2, which combines the track-wise output format, PIT, and
soft PS, is utilized for our system. We extend EINV2 to three tracks
to address up to three overlapped sound events. We then utilize
Conformer blocks to replace the multi-head self-attention (MHSA)
blocks in EINV2. Conformer consists of two feed-forward layers
with residual connections sandwiching the MHSA and convolu-
tion modules, where MHSA and convolution modules can capture
global and local patterns, respectively [8, 14]. Our proposed net-
work is shown in Fig. 1.

2.3. Data Augmentation Chains

Our proposed data-augmentation is characterized by utilizing sev-
eral augmentation operations [8,9,15]. We randomly sample k aug-
mentation chains, where k = 3 is used by default. Each augmen-
tation chain is constructed by composing from some randomly se-
lected augmentation operations. Augmentation operations that we
used include Mixup [16], SpecAugment [17], Cutout, frequency
shifting [18] and rotation of FOA signals [19]. The diagram of data
augmentation chains is shown in Fig. 2

Mixup trains a neural network on convex combinations of pairs
of feature vectors and their labels. We use Mixup on both raw wave-
forms and features to improve the generalization for detecting over-
lapping sound events. While random Cutout produces several rect-
angular masks on features, SpecAugment produces time and fre-
quency stripes to mask on features. Frequency shifting in the fre-
quency domain is similar to pitch shift in the time domain, and it
randomly shifts input features of all the channels up or down along
the frequency dimension by several bands. We also use a spatial
augmentation method, which is rotation of FOA signals. It rotates
FOA format signals and enriches DoA labels without losing phys-
ical relationships between steering vectors and observer. We use z
axis as the rotation axis, which leads to 16 types of channel rotation.
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Figure 2: Diagram of data augmentation chains

2.4. Simulated Data

Since manual annotations are expensive and the duration of
STARSS22 is limited compared to the synthetic datasets used in
previous years, external dataset is allowed to improve model perfor-
mance. We generated simulated data using generator code provided
by DCASE 20223.

Samples of sound event chosen are mainly sources from
FSD50K dataset, based on affinity of the labels in that datasets to
the target classes. The target class background music, and inter-
ference classes shuffling cards are not in FSD50K dataset, hence
we use AudioSet as a supplement. Spatial events spatialized in 9
unique rooms, using collected SRIRs from TAU-SRIR DB. The am-
bient noise from the same room was additional mixed at varying
signal-to-noise rations (SNR) from 30 dB to 6 dB. The maximum
polyphony of target classes is 3, excluding additional polyphony of
interference classes.

We select all sound event samples whose labels are only corre-
sponded to the target classes. Since samples of each class are much
unbalanced, sound event samples of each class are randomly strati-
fied sampled. Each sound event sample also has a different energy
gain for mixing. By setting different ranges of gain and choosing
different samples, we generate three dataset, A, B and C. All of
these synthetic datasets have 2700 1-minute clips.

3. EXPERIMENTS

3.1. Datasets

The STARSS22 contains recordings of real scenes, and the density
of sound event samples and the presence of each class varies greatly.
The maximum number of overlap is 5, but those samples are very
rare [5]. Occurences of up to 3 simultaneous events are fairly com-
mon, so we ignore overlapping events with polyphony degree of
more than 3 that occur. During development stage, we train our
proposed model on mixed dataset of synthetic recordings and dev-
set-train of STARSS22, and evaluate those systems using dev-set-
test of STARSS22. During evaluation stage, synthetic recordings,
dev-set-train and dev-set-test of STARSS22 are all used for training.

3.2. Hyper-parameters

The sampling frequency of the dataset is 24 kHz. We used a 1024-
point Hanning window with a hop size of 400 and 128 mel bins for
log-mel spectrograms and IV features. Audio clips are segmented
to have a fix length of 5 seconds with no overlap for training and
inferring. AdamW optimizer is used. The learning rate is set to
0.0003 for the first 70 epochs and is adjusted to 0.00003 for the

3https://github.com/danielkrause/
DCASE2022-data-generator

following 20 epochs. The threshold for SED is set to 0.5 to binarize
predictions. The loss weight between SED and DoA is 0.5.

3.3. Evaluation Metrics

We use official evaluation metrics to evaluate the SELD perfor-
mance [20, 21]. The evaluation metrics uses a joint metric of lo-
calization and detection: location-sensitive detection metrics F≤T◦

and ER≤T◦ , and class-sensitive localization metrics LRCD and
LECD. F≤T◦ and ER≤T◦ consider true positives predicted un-
der a spatial threshold T ◦ from the ground truth. As for LECD and
LRCD, the detected sound class has to be correct in order to count
the corresponding localization predictions.

Contrary to the previous challenges, the evaluation metrics are
micro-averaged, which gives equal weight to each individual deci-
sion and affected by the performance on the larger classes. In this
challenge, macro-averaging of evaluation metrics are used. Macro-
averaging gives equal weight to each class, and emphasize the sys-
tem behavior on the smaller classes [22].

We use an aggregated SELD metric which was computed as

ϵSELD =
1

4

[
ER≤T◦ + (1− F≤T◦) +

LECD

180◦
+ (1− LRCD)

]
(3)

A good SELD system should have low ER≤T◦ , high F≤T◦ , low
LECD, high LRCD, and low aggregated SELD metric ϵSELD.

3.4. Experimental Results

The official spatial threshold is set to T = 20◦. Table 1 shows
the performance on dev-set-test of STARSS22. Official dataset
means official synthetic SELD mixtures for baseline training4. Sys-
tem baseline, EINV2 without dataAug chains, and EINV2 with
dataAug chains all use the same dataset for training. EINV2 without
data augmentation chains outperforms the baseline model, whereas
EINV2 with data augmentation chains performs better.

All configurations of system #1 - #4 are the same as system
EINV2 with dataAug chains, except for training set. The results
also demonstrate the effectiveness of our simulated data over the
official dataset, but there are not significant improvement of metric
scores among different datasets.

4. CONCLUSION

We have presented Event-Independent Network V2 (EINV2) with a
novel data augmentation approach for real-life sound event localiza-
tion and detection. EINV2 is extended by conformer blocks, and the
novel data augmentation approach contains several augmentation
chains. Each augmentation chain contains several randomly sam-
pled augmentation operations. In addition, external data is permit-
ted in this challenge, hence samples of sound event from FSD50K
and AudioSet are convolved with measured spatial room impulse
responses from TAU Spatial Room Impulse Responses Database
(TAU-SRIR DB) to generate simulated data. Our model with data
augmentation chains performs better than the baseline model. Fur-
thermore, experimental results show further improvement with our
synthetic dataset.

4https://zenodo.org/record/6406873
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Table 1: The SELD performance on the dev-set-test of STARSS22. The dev-set-train of STARSS22 is mixed into training set by default.

Macro-average Micro-average
System Datasets ER20◦ F20◦ LECD LRCD ϵSELD ER20◦ F20◦ LECD LRCD ϵSELD

Baseline FOA [5] Official 0.71 0.21 29.3◦ 0.46 0.55 0.71 0.36 - - -
EINV2 w/o dataAug chains Official 0.75 0.32 24.0◦ 0.56 0.50 0.75 0.36 25.6◦ 0.62 0.48
EINV2 w/ dataAug chains Official 0.56 0.42 19.3◦ 0.61 0.41 0.56 0.53 19.1◦ 0.71 0.36

System #1 A+B+C 0.50 0.48 19.5◦ 0.66 0.37 0.50 0.57 18.7◦ 0.72 0.33
System #2 A+B 0.50 0.51 16.4◦ 0.66 0.36 0.50 0.59 17.2◦ 0.72 0.32
System #3 A 0.53 0.48 17.8◦ 0.63 0.38 0.53 0.55 18.2◦ 0.69 0.35
System #4 B 0.53 0.45 17.4◦ 0.63 0.39 0.53 0.57 17.5◦ 0.69 0.34
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